Importance of Using Fiber Color Codes in Data Center

The utilization of fiber color code in data center effectively helps technicians make better cable management and reduce human errors. Without redundant checking process, people can easily get the information of the device by only one look. Making good use of the color code system can surely save much time during work. This article will mainly present the widely accepted color code system and its important functions.

fiber color code

Introduction to Fiber Color Code Systems

Fibers, tubes and ribbons in fiber optic cables are usually marked with different color codes to facilitate identification. There are many color code systems for national or international use. All these systems are characterized by using 12 different colors to identify fibers that are grouped together in a common bundle such as a tube, ribbon, yarn wrapped bundle or other types of bundle.

Different color code standards may be used in different regions. For example, the S12 standard is used for micro cables and nano cables in Sweden and other countries. The Type E standard is defined by Televerket and Ericsson used in Sweden. The FIN2012 standard is used in Finland, etc. However, there is one color code system widely recognized in the world, namely the TIA/EIA-598 standard.

Specifications of TIA/EIA-598 Color Codes

The following picture gives the fiber color coding of TIA/EIA-598 standard. If more than 12 fibers or tubes are to be separated, the color sequence is normally repeated with ring marks or lines on the colored fibers and tubes. As for the fiber cable jacket, orange, yellow, aqua and black color codes are used for their distinction.

color-code-system

Functions of Fiber Color Code in Data Center
Distinguishing Fiber Grades

As mentioned above, the outer jacket color codes are able to identify the fiber grades. OM1/OM2 cables often adopt the orange jacket, OM3/OM4 cables with aqua jacket, single-mode cables with yellow jacket and hybrid cables (indoor/outdoor cables and outside plant cables) with black jacket. One thing to note is that the mix of OM1 and OM2 or OM3 and OM4 cables may be troublesome. You should make sure not to mingle these cables with the same color code.

Identifying Fiber Patch Cords

Using fiber color code to label fiber patch cords can reduce the potential for human error. For instance, you may highlight mission-critical patch cords in red, and then teach all technicians that a red patch cord should only be moved with proper authorization or under supervision. Likewise, keeping the fiber connector color consistent with fiber grade color standards will make it simple for technicians to use the right connectors with the cables.

Separating Different Ports

The color-coded port icons can be helpful in identifying different network routings in accordance with internal needs. By tagging each patch panel port, you can simplify and streamline network management.

Differentiating Connector Boots

You can use fiber color code on connector boots to make routine maintenance and moves, adds and changes easier by helping technicians preserve correct parallel groupings for switch ports. If you change your connector color, you need to ensure that your fiber cable color represents the fiber grade to avoid confusion. You can also change the color of a connector boot to differentiate between different aspects of the network, making it easy for technicians to view the contrast within a panel.

Conclusion

Visual management is more intuitive for specialists to supervise the data center. Color code system has provided an ideal and easy way to solve the cabling problem. Inside the cables, the fiber buffers are also color-coded with standard colors to make connections and splices easier. Therefore, if you are still bothered by these issues of fiber patch cables, using the fiber color code system is a good way to go.

Related Articles:
How to Identify the Color Codes?
Fiber Patch Panel Color Codes

Things You Need to Know About ADSS Fiber Cables

When it comes to OSP (outside plant) deployment, many types of fiber optic cables are used for different OSP applications. ADSS (all-dielectric self-supporting) cable is the type that is strong enough to support itself between structures without using conductive metal elements. It is often installed along aerial transmission lines to be a communication medium for electrical utility companies. Both single-mode and multimode fiber can be arranged in ADSS cables. And when using single-mode fibers, the cable can carry the maximum of 144 fibers. But do you know the basic structures of ADSS fiber cable? What are the advantages of using ADSS cable? And how can you prevent ADSS cable from damage? This article will give you all the answers.

ADSS cable

Structures of ADSS Cable

There are generally two kinds of structures for ADSS cable. One is called as central tube structure. From the following picture, the fiber of a certain length is placed in a PBT loose tube filled with water-blocking material. Then it is wrapped with aramid yarn according to the desired tensile strength and extruded with PE or AT sheath. This structure has a smaller diameter and lighter weight. But the fiber length is limited.

adss-central-tube-structure

The other type of structure is called as stranded structure. The following picture shows that the fiber loose tubes are surrounding around a central strength member (usually as FRP material). And the rest parts are similar to the central tube structure. This type is able to obtain a longer fiber length. Although the diameter and weight are relatively big, it is better to be deployed for large span applications.

adss-stranded-structure

Benefits of ADSS Cable

There are many advantages of using ADSS fiber cable. The overall weight and diameter of the cable are small which is a relief to the towers and poles. And its total transmission range is large enough to reach up to 1200 meters. Using the polyethylene sheath will also protect the cable from corrosive effect. ADSS cable’s non-metallic structure makes it possible to be anti-lightning. And the aramid yarn helps the cable to have good tensile performance and temperature performance under extreme weathers. The maximum lifespan of ADSS fiber cables can even reach up to thirty years.

Precautions for ADSS Cable Damage

  • Point 1, since many cables are running through mountainous areas, it is inevitable that the cables will be scratched or bent when come across trees or rocks. Especially for the cable sheath damage, it will greatly harm the service life of cable because the surface can be corroded once exposed to the dust and salty environment. Thus, the cable installation should be under careful examination and monitoring.
  • Point 2, due to the partial force during the line construction, common accidents like broken fiber and high loss point can be occurred. Lots of people think it is the problem of cable quality, but actually, it is because of the wrong construction process. Therefore, taking control of the constant tension at a uniform speed during installation is very important.
  • Point 3, another common damage is the broken fiber at strain towers. This is because of the wrong operation or partial force on fibers. During the construction, installers must pay attention to the proper angle and pulling direction of fibers to avoid such accidents.

Conclusion

ADSS cable is ideal for installation in distribution as well as transmission environments. It does not need support or messenger wire, a single pass is sufficient for installation which makes it a cost-effective and simple way of setting up fiber optic networks. With careful installation, this type of fiber optic cable can bring much convenience for the proper application.

Related Articles:

How to Reduce Various Types of Losses in Optical Fiber?

Types of outdoor fiber optic cable

Choose the Right Patch Cable for Your Transceiver Module

To a large extent, a fluent data transmission relies on the seamless transition between patch cables and fiber optic transceivers. As high bandwidth gradually dominates the market, patch cables and transceivers become much more essential to data transmission, especially for data transmission between the switches and equipment. But when you try to find the right patch cable for your transceiver, you may feel dazzling about the great variety of products. Don’t worry, this article will help you find the quickest way to choose the suitable product. But first, let’s have a look at the basic knowledge about patch cables and transceiver modules.

Overview of Patch Cables and Transceiver Modules

A patch cable or patch cord is an electrical or optical cable used to connect one electronic or optical device to another for signal routing. It is composed of an electrical or optic cable terminated with connectors on the ends. Optical patch cables are now widely used in data centers for data transmission. They have different fiber connectors including LC, SC, ST, FC, MTRJ, E2000, MU, MPO/MTP, etc. As for fiber types, there are also single-mode patch cables and multimode patch cables. Single-mode patch cables can further be classified into OS1 and OS2. While the multimode can be further divided into OM1, OM2, OM3 and OM4.

fiber-vs.-copper

Transceiver is a self-contained component that can both transmit and receive. It is often inserted in devices such as switches, routers or network interface cards which provide one or more transceiver module slot. Many transceivers types, such as SFP, X2, XENPAK, XFP, SFP+, QSFP+, CFP, etc. are used for various applications. The transceiver accepts digital signals from the Ethernet device and converts them to optical signals for transmission over the fiber.

Several Aspects to Consider
Transmission Media

Two kinds of transmission media can be found in the network. They are optic fiber cable and copper cable. Therefore, transceivers also have two types based on transmission media — copper based transceivers and fiber optic based transceivers. Copper based transceivers like 100BASE-T SFP, 1000BASE-T SFP are the commonly used types. They have a RJ45 interface to connect with the copper cables. Generally, cat 5, cat 6 and cat 7 cables attached with RJ45 connectors are typically linked to the copper based transceivers.

Compared with copper based transceivers, fiber optic transceivers support higher data rates for over 100 Gbps. The supported fiber patch cables are more complicated for selection. Usually single-mode and multimode fiber patch cables are used. But according to different transmission rates and transmission distance, further choices should be made.

Transmission Rate and Distance

It is known that data rate decreases as the transmission distance increases in fiber optic cables. Multimode fiber optic cables are often used for short distances due to the high cost of single-mode optical cables. But single-mode patch cables have better performance for different data rates in both long and short distances. Thus, if your transceiver supports high data rate over long distance, single-mode should be a better choice, and vice versa.

Transceiver Interface

Interfaces are also important to the selection of patch cables that match with transceivers. Optical transceivers usually use one port for transmitting and one port for receiving. Cables with duplex SC or LC connectors are typically employed to connect with this type of fiber optic transceivers. However, for BiDi transceivers only one port is used for both transmitting and receiving. Thus, simplex patch cables are used with BiDi transceivers.

Other high data rate transceivers like 40G/100GBASE QSFP+ often use MTP/MPO interfaces. They should be connected to the network with multi-fiber patch cords attached with MTP/MPO connectors. If these ports are used for 40 G to 10 G or 100 G to 10 G connections, fanout patch cables should be used.

transceiver-and-patch-cords

Conclusion

Knowing the transmission media, transmission data rate and distance, transceiver interfaces can give you a general direction of which type of patch cables should be chosen. Only matched patch cables and transceiver modules can provide better performance.

Applications of Special-Purpose Fiber Patch Cables

Fiber patch cable is an indispensable part for fiber optic communication. Signals are depending on this device to finish data transmission. Standard fiber patch cables are the most common patch cables in the market. However, there are some specific applications that need special treatment. Therefore, a range of special-purpose fiber patch cables have emerged as required. This article will recommend several unique but useful fiber patch cables. Maybe one of them will suit your needs.

HD TAB Fiber Patch Cable

As the name suggests, HD TAB fiber patch cable has a special push-pull tab which provides great convenience for high-density installations. Technicians can have easier finger access to installing or releasing the cables without using any additional tools. In today’s market, HD TAB fiber patch cables are usually terminated with LC or MTP/MPO connectors. If you are seeking for a high-density and space-saving solution, HD TAB fiber patch cable is highly recommended.

HD-TAB-fiber-patch-cable

The uniboot LC fiber patch cable bundles two fibers in a single patch cord which saves much space for cabling. The changing of its LC uniboot connector polarity is easy ,which skips the using of tools. Uniboot LC fiber patch cable is available in different fiber types of single-mode, OM3 and OM4. The purpose of this cable is to deliver maximum connectivity performance in a minimal footprint. If you want to achieve an easier cable management, this is definitely a good choice.

In addition, there is an upgraded version of uniboot LC fiber patch cable – HD uniboot LC fiber patch cable. You can’t miss this one if you are looking for the extreme space saving solution. It is basically the combination of uniboot LC fiber patch cable and HD TAB fiber patch cable. Likewise, two optical fibers are wrapped together in a single strand. The difference is that its connector is attached with a push-pull tab which is more flexible for releasing the connector. It can be applied to data centers and high-density environments.

uniboot-LC-fiber-patch-cable

Keyed LC Fiber Patch Cable

In terms of data security, keyed LC fiber patch cable or secured LC fiber patch cable is the perfect solution. It is designed to prevent unauthorized and inadvertent changes in highly sensitive applications. Keyed LC fiber patch cable is identified by the connector color. Each color of a set of keyed LC connectivity products represents a unique keying pattern that only allows matched color mating. Multiple keyed LC connectivity products are included in this family. The picture below gives an example of the simplex keyed LC connectivity.

keyed-lc-connector-and-adapter

Originally, when bending an optical fiber by stress, there will be a bend loss. This sensitive nature of optical fiber causes low efficiency in optical transmission. But it is hard to deal with the problem as bend loss issue is difficult to locate. Fortunately, bend insensitive fiber patch cable is designed to solve this problem. In this kind of cable, a layer of glass is added around the core of the fiber which has a lower index of refraction that literally “reflects” the weakly guided modes back into the core. Many data centers and FTTH systems are deploying this cable to reach lower signal loss.

Conclusion

From this article, we can see that there still exists many other types of fiber patch cables. And special fiber optic cable solutions are always more effective to special applications. By the way, if you just want a standard optical cable, you may consider from the aspects of fiber type, connector type, connector polishing type, fiber count, cable jacket, etc. These options are fit for average circumstances when choosing the optical cables. Hope you choose the right one according to your requirements!

Which Do You Prefer: 10GBASE-T or SFP+ DAC?

A variety of technological advancements and trends are driving the increasing need for 10 GbE in the data center. IT managers are now faced with the challenge of selecting the appropriate 10-gigabit physical media, as 10 Gigabit Ethernet (10GE) is offered in two broad categories, optical and copper, with the latter being the most commonly used means for connectivity in data centers. This article addresses the tradeoffs between the effective choices in copper connectivity 10GBase-T and SFP+ direct attach cable (DAC fiber).

What is 10GBASE-T and Why Choose It?

10GBASE-T is an IEEE 802.3an standard which supports the creation of technology that is capable of transmitting 10 Gigabit Ethernet up to 100 meters over four pairs of CAT5 balanced copper cabling system. It is an exciting technology that provides end users with cost-effective media to achieve 10Gbps data rates.

Like all BASE-T implementations, 10GBASE-T works for lengths up to 100 meters, giving IT managers a far greater level of flexibility in connecting devices in the data center. With flexibility in reach, 10GBASE-T can accommodate either top of the rack, middle of row, or end of the row network topologies. This gives IT managers the most flexibility in server placement since it will work with existing structured cabling systems. Because 10GBASE-T is backward-compatible with 1000BASE-T, it can be deployed in existing 1 GbE switch infrastructures in data centers that are cabled with CAT6 and CAT6A (or above) cabling, enabling IT to keep costs down while offering an easy migration path to 10 GbE.

What is SFP+ DAC Fiber and the Benefits of It?

SFP+ direct attach cable (DAC) is a fixed assembly that is purchased at a given length, with the SFP+ connector modules permanently attached to each end of the cable. SFP+ DAC provides high performance in 10 Gigabit Ethernet network applications, using an enhanced SFP+ connector to send 10 Gbps data through one paired transmitters and receivers over a thin twinax cable or fiber optic cable. The 10G SFP+ DAC is designed to use the same port as an optical transceiver, but compared with optical transceivers, the connector modules attached to the cable leave out the expensive optical lasers and other electronic components, thus achieving significant cost savings and power savings in short reach applications.

SFP DAC fiber H10GB-CU5M

SFP+ DAC is a low cost alternative to traditional fiber and twisted-pair copper cabling in data center deployments. SFP+ DAC provides better cable management for high-density deployments and enhanced electrical characteristics for the most reliable signal transmission.

10GBASE-T vs 10GBASE SFP + DAC

SFP+ DAC fiber has significantly lower overall cost when you include switch, NIC and cable, however, 10GBase-T has more flexibility and can reach longer distance. For data centers, the advantages of SFP+ with DAC are a very good match for today’ s requirements and emerging trends. That’s why SFP+ DAC is being adopted rapidly as best practice for new data centers. For wiring closets, 10GBase – T will be the obvious choice once the demand for bandwidth becomes more acute and once the price and power for 10GBase-T technology comes down.

As one of the most professional optical manufacturers in China, FS solutions for 10 Gigabit Ethernet include 10G SFP+ DAC fiber, 10G SFP+ direct attach copper cable. Besides, we also provide high-quality 10G SFP transceivers, like EX-SFP-10GE-LR, SFP-10G-LR-X, SFP-10G-SR-X, etc.

Related Articles:
What’s DAC Cable And Why Choose It Over Fiber Transceiver?
Running 10GBASE-T Over Cat6 vs Cat6a vs Cat7 Cabling?