Coherent Optics and 400G Applications

In today’s high-tech and data-driven environment, network operators face an increasing demand to support the ever-rising data traffic while keeping capital and operation expenditures in check. Incremental advancements in bandwidth component technology, coherent detection, and optical networking have seen the rise of coherent interfaces that allows for efficient control, lower cost, power, and footprint.

Below, we have discussed more about 400G, coherent optics, and how the two are transforming data communication and network infrastructures in a way that’s beneficial for clients and network service providers.

What is 400G?

400G is the latest generation of cloud infrastructure, which represents a fourfold increase in the maximum data-transfer speed over the current maximum standard of 100G. Besides being faster, 400G has more fiber lanes, which allows for better throughput (the quantity of data handled at a go). Therefore, data centers are shifting to 400G infrastructure to bring new user experiences with innovative services such as augmented reality, virtual gaming, VR, etc.

Simply put, data centers are like an expressway interchange that receives and directs information to various destinations, and 400G is an advancement to the interchange that adds more lanes and a higher speed limit. This not only makes 400G the go-to cloud infrastructure but also the next big thing in optical networks.

400G

What is Coherent Optics?

Coherent optical transmission or coherent optics is a technique that uses a variation of the amplitude and phase or segment of light and transmission across two polarizations to transport significantly more information through a fiber optic cable. Coherent optics also provides faster bit rates, greater flexibility, modest photonic line systems, and advanced optical performance.

This technology forms the basis of the industry’s drive to embrace the network transfer speed of 100G and beyond while delivering terabits of data across one fiber pair. When appropriately implemented, coherent optics solve the capacity issues that network providers are experiencing. It also allows for increased scalability from 100 to 400G and beyond for every signal carrier. This delivers more data throughput at a relatively lower cost per bit.

Coherent

Fundamentals of Coherent Optics Communication

Before we look at the main properties of coherent optics communication, let’s first understand the brief development of this data transmission technique. Ideally, fiber-optic systems came to market in the mid-1970s, and enormous progress has been realized since then. Subsequent technologies that followed sought to solve some of the major communication problems witnessed at the time, such as dispersion issues and high optical fiber losses.

And though coherent optical communication using heterodyne detection was proposed in 1970, it did not become popular because the IMDD scheme dominated the optical fiber communication systems. Fast-forward to the early 2000s, and the fifth-generation optical systems entered the market with one major focus – to make the WDM system spectrally efficient. This saw further advances through 2005, bringing to light digital-coherent technology & space-division multiplexing.

Now that you know a bit about the development of coherent optical technology, here are some of the critical attributes of this data transmission technology.

  • High-grain soft-decision FEC (forward error correction):This enables data/signals to traverse longer distances without the need for several subsequent regenerator points. The results are more margin, less equipment, simpler photonic lines, and reduced costs.
  • Strong mitigation to dispersion: Coherent processors accounts for dispersion effects once the signals have been transmitted across the fiber. The advanced digital signal processors also help avoid the headaches of planning dispersion maps & budgeting for polarization mode dispersion (PMD).
  • Programmability: This means the technology can be adjusted to suit a wide range of networks and applications. It also implies that one card can support different baud rates or multiple modulation formats, allowing operators to choose from various line rates.

The Rise of High-Performance 400G Coherent Pluggables

With 400G applications, two streams of pluggable coherent optics are emerging. The first is a CFP2-based solution with 1000+km reach capability, while the second is a QSFP DD ZR solution for Ethernet and DCI applications. These two streams come with measurement and test challenges in meeting rigorous technical specifications and guaranteeing painless integration and placement in an open network ecosystem.

When testing these 400G coherent optical transceivers and their sub-components, there’s a need to use test equipment capable of producing clean signals and analyzing them. The test equipment’s measurement bandwidth should also be more than 40-GHz. For dual-polarization in-phase and quadrature (IQ) signals, the stimulus and analysis sides need varying pulse shapes and modulation schemes on the four synchronized channels. This is achieved using instruments that are based on high-speed DAC (digital to analog converters) and ADC (analog to digital converters). Increasing test efficiency requires modern tools that provide an inclusive set of procedures, including interfaces that can work with automated algorithms.

Coherent Optics Interfaces and 400G Architectures

Supporting transport optics in form factors similar to client optics is crucial for network operators because it allows for simpler and cost-effective architectures. The recent industry trends toward open line systems also mean these transport optics can be plugged directly into the router without requiring an external transmission system.

Some network operators are also adopting 400G architectures, and with standardized, interoperable coherent interfaces, more deployments and use cases are coming to light. Beyond DCI, several application standards, such as Open ROADM and OpenZR+, now offer network operators increased performance and functionality without sacrificing interoperability between modules.

Article Source:Coherent Optics and 400G Applications

Related Articles:
Typical Scenarios for 400G Network: A Detailed Look into the Application Scenarios
How 400G Ethernet Influences Enterprise Networks?
ROADM for 400G WDM Transmission

Importance of FEC for 400G


The rapid adoption of 400G technologies has seen a spike in bandwidth demands and a low tolerance for errors and latency in data transmission. Data centers are now rethinking the design of data communication systems to expand the available bandwidth while improving transmission quality.

Meeting this goal can be quite challenging, considering that improving one aspect of data transmission consequently hurts another. However, one solution seems to stand out from the rest as far as enabling reliable, efficient, and high-quality data transmission is concerned. We’ve discussed more on Forward Error Correction (FEC) and 400G technology in the sections below, including the FEC considerations for 400Gbps Ethernet.

What Is FEC?

Forward Error Correction is an error rectification method used in digital signals to improve data reliability. The technique is used to detect and correct errors in data being transmitted without retransmitting the data.

FEC introduces redundant data and the error-correcting code before data transmission is done. The redundant bits/data are complex functions of the original information and are sent multiple times since an error can appear in any transmitted samples. The receiver then corrects errors without requesting retransmission of the data by acknowledging only parts of the data with no apparent errors.

FEC codes can also generate bit-error-rate signals used as feedback to fine-tune analog receiving electronics. The FEC code design determines the number of missing bits that can be corrected. Block codes and convolutional codes are the two FEC code categories that are widely used. Convolutional codes handle arbitrary-length data and use the Viterbi algorithm for decoding purposes. On the other hand, block codes handle fixed-size data packets, and partial code blocks are decoded in polynomial time to the code block length.

FEC

What Is 400G?

This is the next generation of cloud infrastructure widely used by high-traffic volume data centers, telecommunication service providers, and other large enterprises with relentless data transmission needs. The rapidly increasing network traffic has seen network carriers continually face bandwidth challenges. This exponential sprout in traffic is driven by the increased deployments of machine learning, cloud computing, artificial intelligence (AI), and IoT devices.

Compared to the previous 100G solution, 400G, also known as 400GbE or 400GB/s, is four times faster. This Terabit Ethernet transmits data at 400 billion bits per second, i.e., in optical wavelength; hence it’s finding application in high-speed, high-performance deployments.

The 400G technology also delivers the power, data density, and efficiency required for cutting-edge technologies such as virtual reality (VR), augmented reality (AR), 5G, and 4K video streaming. Besides consuming less power, the speeds also support scale-out and scale-up architectures by providing high density, low-cost-per-bit, and reliable throughput.

Why 400G Requires FEC

Several data centers are adopting 400 Gigabit Ethernet, thanks to the faster network speeds and expanded use cases that allow for new business opportunities. This 400GE data transmission standard uses the PAM4 technology, which offers twice the transmission speed of NRZ technology used for 100GE.

The increased speed and convenience of PAM4 also come with its own challenges. For instance, the PAM4 transmission speed is twice as fast as that of NRZ, but the signal levels are half that of 100G technology. This degrades the signal-to-noise ratio (SNR); hence 400G transmissions are more susceptible to distortion.

Therefore, forward error correction (FEC) is used to solve the waveform distortion challenge common with 400GE transmission. That said, the actual transmission rate of a 400G Ethernet link is 425Gbps, with the additional 25 bits used in establishing the FEC techniques. 400GE elements, such as DR4 and FR4 optics, have transmission errors, which FEC helps rectify.

FEC Considerations for 400Gbps Ethernet

With the 802.3bj standards, FEC-related latency is often targeted to be equal to or less than 100ns. Here, the receive time for FEC-frame takes approximately 50ns, with the rest time budget used for decoding. This FEC latency target is practical and achievable.

Using similar/same FEC code for the 400GbE transmission makes it possible to achieve lower latency. But when a higher coding gain FEC is required, e.g., at the PMD level, one can trade off FEC latency for the desired coding gain. It’s therefore recommended to keep a similar latency target (preferably 100ns) while pushing for a higher coding gain of FEC.

Given that PAM4 modulation is used, FEC’s target coding gain (CG) could be over 8dB. And since soft-decision FEC comes with excessive power consumption, it’s not often preferred for 400GE deployments. Similarly, conventional block codes with their limited latency need a higher overclocking ratio to achieve the target.

Assuming that a transcoding scheme similar to that used in 802.3bj is included, the overclocking ratio should be less than 10%. This helps minimize the line rate increase while ensuring sufficient coding gain with limited latency.

So under 100ns latency and less than 10% overclocking ratio, FEC codes with about 8.5dB coding gain are realizable for 400GE transmission. Similarly, you can employ M (i.e., M>1) independent encoders for M-interleaved block codes instead of using parallel encoders to achieve 400G throughput.

Conclusion

400GE transmission offers several benefits to data centers and large enterprises that rely on high-speed data transmission for efficient operation. And while this 400G technology is highly reliable, it introduces some transmission errors that can be solved effectively using forward error correction techniques. There are also some FEC considerations for 400G Ethernet, most of which rely on your unique data transmission and network needs.



Article Source: Importance of FEC for 400G

Related Articles:
How 400G Ethernet Influences Enterprise Networks?
How Is 5G Pushing the 400G Network Transformation?
400G Transceiver, DAC, or AOC: How to Choose?

ROADM for 400G WDM Transmission

As global optical networks advance, there is an increasing necessity for new technologies such as 400G that meet the demands of network operators. Video streaming, surging data volumes, 5G network, remote working, and ever-growing business necessities create extreme bandwidth demands.

Network operators and data centers are also embracing WDM transmission to boost data transfer speed, increase bandwidth and enhance a better user experience. And to solve some of the common 400G WDM transmission problems, such as reduced transmission reach, ROADMs are being deployed. Below, we have discussed more about ROADM for 400G WDM transmission.

Reconfigurable Optical Add-drop Multiplexer (ROADM) Technology

ROADM is a device with access to all wavelengths on a fiber line. Introduced in the early 2000s, ROADM allows for remote configuration/reconfiguration of A-Z lightpaths. Its networking standard makes it possible to block, add, redirect or pass visible light beams and modulated infrared (IR) in the fiber-optic network depending on the particular wavelength.

ROADMs are employed in systems that utilize wavelength division multiplexing (WDM). It also supports more than two directions at sites for optical mesh-based networking. Unlike its predecessor, the OADM, ROADM can adjust the add/drop vs. pass-through configuration whenever traffic patterns change.

As a result, the operations are simplified by automating the connections through an intermediate site. This implies that it’s unnecessary to deploy technicians to perform manual patches in response to a new wavelength or alter a wavelength’s path. The results are optimized network traffic where bandwidth demands are met without incurring extra costs.

ROADM

Overview of Open ROADM

Open ROADM is a 400G pluggable solution that champions cross-vendor interoperability for optical equipment, including ROADMs, transponders, and pluggable optics. This solution defines some optical interoperability requirements for ROADM and comprises hardware devices that manage and routes traffic over the fiber optic lines.

Initially, Open ROADM was designed to address the rise in data traffic on wireless networks experienced between 2007 and 2015. The major components of Open ROADM – ROADM switch, pluggable optics, and transponder – are controllable via an open standards-based API accessible through an SDN Controller.

One of the main objectives of Open ROADM is to ensure network operators and vendors devise a universal approach to designing networks that are flexible, scalable, and cost-effective. It also offers a standard model to streamline the management of multi-vendor optical network infrastructure.

400G and WDM Transmission

WDM transmission is a multiplexing technique of several optical carrier signals through a single optical fiber channel by varying the wavelength of the laser lights. This technology allows different data streams to travel in both directions over a fiber network, increasing bandwidth and reducing the number of fibers used in the primary network or transmission line.

With 400G technology seeing widespread adoption in various industries, there’s a need for optical fiber networking systems to adapt and support the increasing data speeds and capacity. WDM transmission technique offers this convenience and is considered a technology of choice for transmitting larger amounts of data across networks/sites. WDM-based networks can also hold various data traffic at different speeds over an optical channel, allowing for increased flexibility.

400G WDM still faces a number of challenges. For instance, the high symbol rate stresses the DAC/ADC in terms of bandwidth, while the high-order quadrature amplitude modulation (QAM) stresses the DAC/ADC in terms of its ENOB (effective number of bits.)

As far as transmission performance is concerned, the high-order QAM requires more optical signal-to-noise ratio (OSNR) at the receiver side, which reduces the transmission reach. Additionally, it’s more sensitive to the accumulation of linear and non-linear phase noise. Most of these constraints can be solved with the use of ROADM architectures. We’ve discussed more below.

WDM Transmission

Open ROADM MSA and the ROADM Architecture for 400G WDM

The Open ROADM MSA defines some interoperability specifications for ROADM switches, pluggable optics, and transponders. Most ROADMs in the market are proprietary devices built by specific suppliers making interoperability a bit challenging. The Open ROADM MSA, therefore, seeks to provide the technical foundation to deploy networks with increased flexibility.

In other words, Open ROADM aims at disaggregating the data network by allowing for the coexistence of multiple transponders and ROADM vendors with a few restrictions. This can be quite helpful for 400G WDM systems, especially when lead-time and inventory issues arise, as the ability to mix & match can help eliminate delays.

By leveraging WDM for fiber gain as well as optical line systems with ROADMs, network operators can design virtual fiber paths between two points over some complex fiber topologies. That is, ROADMs introduce a logical transport underlay of single-hop router connections that can be optimized to suit the IP traffic topology. These aspects play a critical role in enhancing 400G adoption that offers the much-needed capacity-reach, flexibility, and efficiency for network operators.

That said, ROADMs have evolved over the years to support flexile-grid WSS technology. One of the basic ROADM architectures uses fixed filters for add/drop, while the other architectures offer flexibility in wavelength assignment/color or the option to freely route wavelengths in any direction with little to no restriction. This means you can implement multi-degree networking with multiple fiber paths for every node connecting to different sites. The benefit is that you can move traffic along another path if one fiber path isn’t working.

Conclusion

As data centers and network operators work on minimizing overall IP-optical network cost, there’s a push to implement robust, flexible, and optimized IP topologies. So by utilizing 400GbE client interfaces, ROADMs for 400G can satisfy the ever-growing volume requirements of DCI and cloud operators. Similarly, deploying pluggable modules and tapping into the WDM transmission technique increases network capacity and significantly reduces power consumption while simplifying maintenance and support.

Article Source: ROADM for 400G WDM Transmission
Related Articles:

400G ZR vs. Open ROADM vs. ZR+
FS 200G/400G CFP2-DCO Transceivers Overview

FS 400G Product Family Introduction

400G ZR vs. Open ROADM vs. ZR+


As global optical networks evolve, there’s an increasing need to innovate new solutions that meet the requirements of network operators. Some of these requirements include the push to maximize fiber utilization while reducing the cost of data transmission. Over the last decade, coherent optical transmission has played a critical role in meeting these requirements, and it’s expected to progressively improve for the next stages of tech and network evolution.

Today, we have coherent pluggable solutions supporting data rates from 100G to 400G. These performance-optimized systems are designed for small spaces and are low power, making them highly attractive to data center operators. We’ve discussed the 400G ZR, Open ROADM, and ZR+ optical networking standards below.

Understanding 400G ZR vs. Open ROADM vs. ZR+

Depending on the network setups and the unique data transmission requirements, data centers can choose to deploy any of the coherent pluggable solutions. We’ve highlighted key facts about these solutions below, from definitions to differences and applications.

What Is 400G ZR?

400G ZR defines a classic, economical, and interoperable standard for transferring 400 Gigabit Ethernet over a single optical wavelength using DWDM (dense wavelength division multiplexing) and higher-order modulation such as 16 QAM. The Optical Interoperability Forum (OIF) developed this low-cost standard for data transmission as one of the first standards to define an interoperable 400G interface.

400G ZR leverages an ultra-modern coherent optical technology and supports high-capacity point-to-point data transport over DCI links between 80 and 120km. The performance of 400ZR modules is also limited to ensure it’s cost-effective with a small physical size. This helps ensure that the power consumption fits within smaller modules such as the Quad Small Form-Factor Pluggable Double-Density (QSFP-DD) and Octal-Small Form-Factor Pluggable (OSFP). The 400G ZR enables the use of inexpensive yet modest performance components within the modules.

400G ZR

What Is Open ROADM?

This is one of the 400G pluggable solutions that define interoperability specifications for Reconfigurable Optical Add/Drop Multiplexers (ROADM). The latter comprises hardware devices that manage and route data traffic transported over high-capacity fiber-optic lines. Open ROADM was first designed to combat the surge in traffic on the wireless network experienced between the years 2007 and 2015.

The key components of Open ROADM include ROADM switch, transponders, and pluggable optics – all controllable via open standards-based API accessed via an SDN Controller utilizing the NETCONF protocol. Launched in 2016, the Open ROADM initiative’s main objective was to bring together multiple vendors and network operators so they could devise an agreed approach to design networks that are scalable, cost-effective, and flexible.

This multi-source agreement (MSA) aims to shift from a traditionally closed ROADM optical transport network toward a disaggregated open transport network while allowing for centralized software control. Some of the ways to disaggregate ROADM systems include hardware disaggregation (e.g., defining a common shelf) and functional disaggregation (less about hardware, more about function).

The Open ROADM MSA went for the functional disaggregation first because of the complexity of common shelves. The team intended to focus on simplicity, concentrating on lower-performance metro systems at the time of its first release. Open ROADM handles 100-400GbE and 100-400G OTN client traffic within a typical deployment paradigm of 500km.

Open ROADM

What Is ZR+?

The ZR+ represents a series of coherent pluggable solutions holding line capacities up to 400 Gb/s and stretching well past the 120km specification for 400ZR. OpenZR+ was designed to maintain the classic Ethernet-only host interface of 400ZR while adding support to aid features such as the extended point-to-point reach of up to around 500km and the inclusion of support for OTN Ethernet, etc.

The recently issued MSA provides interoperable 100G, 200G, 300G & 400G line rates over regional, metro, and long-haul distances, utilizing OpenFEC forward error correction and 100-400G optical line specifications. There’s also a broad range of coverage for ZR+ pluggable, and these products can be deployed across routers, switches, and optical transport equipment.

ZR+

400G ZR, Open ROADM, and ZR+ Differences

Target Application

400ZR and OpenZR+ were designed to satisfy the growing volume requirements of DCI and cloud operators using 100GbE/400GbE client interfaces, while OpenROADM provides a good alternative for carriers that require transporting OTN client signals (OTU4).

In other words, the 400ZR efforts concentrate on one modulation type and line rate (400G) for metro point-to-point applications. On the other hand, the OpenZR+ and Open ROADM groups concentrate on high-efficiency optical specifications capable of adjustable 100G-400G line rates and lengthier optical reaches.

400G Reach: Deployment Paradigm

400ZR modules support high-capacity data transport over DCI links of up to 80 to 120km. On the other hand, OpenZR+ and OpenROADM, under perfect network presumption, can transmit the network for up to 480 km in 400G mode.

Power Targets

The power consumption targets of these coherent pluggable also vary. For instance, the 400zr has a target power consumption of 15W, while Open ROADM and ZR+ have power consumption targets of not more than 25W.

Applications for 400G ZR, Open ROADM and ZR+

Each of these coherent pluggable solutions finds use cases in various settings. Below is a quick summary of the three data transfer standards and their major applications.

  • 400G ZR – frequently used for point-to-point DCI (up to 80km), simplifying the task of interconnecting data centers.
  • Open ROADM – This architecture can be deployed using different vendors, provided they exist in the same network. It gives the option to use transponders from various vendors at the end of each circuit.
  • ZR+ – It provides a comprehensive, open, and flexible coherent solution in a relatively smaller form factor pluggable module. This standard addresses hyperscale data center applications for high-intensive edge and regional interconnects.

A Look into the Future

As digital transformation takes shape across industries, there’s an increasing demand for scalable solutions and architectures for transmitting and accessing data. The industry is also moving towards real-world deployments of 400G networks, and the three coherent pluggable solutions above are seeing wider adoption.

400ZR and the OpenZR+ specifications were developed to meet the network demands of DCI and cloud operators using 100 and 400GbE interfaces. On the other hand, Open ROADM offers a better alternative for carriers that want to transport OTN client signals. Currently, Open ZR+ and Open ROADM provide more benefits to data center operators than 400G ZR, and technology is just getting better. Moving into the future, optical networking standards will continue to improve both in design and performance.

Article Source: 400G ZR vs. Open ROADM vs. ZR+
Related Articles:

ROADM for 400G WDM Transmission

400G ZR & ZR+ – New Generation of Solutions for Longer-reach Optical Communications

FS 400G Cabling Solutions: DAC, AOC, and Fiber Cabling

400G Optics in Hyperscale Data Centers

Since their advent, data centers have been striving hard to address the rising bandwidth requirements. A look at the stats reveals that 3.04 Exabytes of data is being generated on a daily basis. Whenever a hyperscale data center is taken into consideration, the bandwidth requirements are massive as the relevant applications require a preemptive approach due to their scalable nature. As the introduction of 400G data centers has taken the data transfer speed to a whole new level, it has brought significant convenience in addressing various areas of concern. In this article, we will dig a little deeper and try to answer the following questions:

  • What are the driving factors of 400G development?
  • What are the reasons behind the use of 400G optics in hyperscale data centers?
  • What are the trends in 400G devices in large-scale data centers?

What Are the Driving Factors For 400G Development?

The driving factors for 400G development are segregated into video streaming services and video conferencing services. These services require pretty high data transfer speeds in order to function smoothly across the globe.

Video Streaming Services

Video streaming services were already taking a toll on the bandwidth requirements. That, combined with the COVID-19 pandemic, forced a large population to stay and work from home. This automatically increased the usage of video streaming platforms. A look at the stats reveals that a medium-quality stream on Netflix consumes 0.8 GB per hour. See that in relation to over 209 million subscribers. As the traveling costs came down, the savings went to improved quality streams on Netflix like HD and 4K. What stood at 0.8 GB per hour rose to 3 and 7 GB per hour. This evolved the need for 400G development.

Video Conferencing Services

As COVID-19 made working from home the new norm, video conferencing services also saw a major boost. Till 2021, 20.56 million people have been reported to be working from home in the US alone. As video conferencing took center stage, Zoom, which consumes 500 MB per hour, saw a huge increase in its user base. This also puts great pressure on the data transfer needs.

What Makes 400G Optics the Ideal Choice For Hyperscale Data Centers?

Significant Decrease in Energy and Carbon Footprint

To put it simply, 400G raises the data transfer speed four times. 400G reduces the cost of 100G ports as breakouts when comparing a 4 x 100G solution to facilitate 400GbE with a single 400G solution to do the same. A single node at the output minimizes the risk of failures as well as lower the energy requirement. This brings down the ESG footprint that has become a KPI for the organizations going forward.

Reduced Operational Cost

As mentioned earlier, a 400G solution requires a single 400G port, whereas addressing the same requirement via a 100G solution requires four 100G ports. On a router, four ports cost way more than a single port that can facilitate rapid data transfer. The same is the case with power. Combined together, these two bring the operational cost down to a considerable extent.400G Optics

Trends of 400G Optics in Large-Scale Data Centers—Quick Adoption

The introduction of 400G solution in large-scale data centers has reshaped the entire sector. This is due to a humongous increase in the data transfer speeds. According to research, 400G is expected to replace 100G and 200G deployments way faster than its predecessors. Since its introduction, more and more vendors are upgrading to network devices that support 400G. The following image truly depicts the technology adoption rate.Trends of 400G Optics

Challenges Ahead

Lack of Advancement in the 400G Optical Transceivers sector

Although the shift towards such network devices is rapid, there are a number of implementation challenges. This is because it is not only the devices that need to be upgraded but also the infrastructure. Vendors are trying to upgrade them in order to stay ahead of the curve but the cost of the development and maturity of optical transceivers is not at the expected benchmark. The same is the case with their cost and reliability. As optical transceivers are a critical element, this comes as a major challenge in the deployment of 400G solutions.

Latency Measurement

In addition, the introduction of this solution has also made network testing and monitoring more important than ever. Latency measurement has always been a key indicator when evaluating performance. Data throughput combined with jitter and frame loss also comes as a major concern in this regard.

Investment in Network Layers

Lastly, the creation of a plug-and-play environment for this solution also needs to be more realistic. This will require a greater investment in the physical, higher level, and network-IP components layers.

Conclusion

Rapid technological advancements have led to concepts like the Internet of Things. These implementations require greater data transfer speeds. That, combined with the world going to remote work, has exponentially increased the traffic. Hyperscale data centers were already feeling the pressure and the introduction of 400G data centers is a step in the right direction. It is a preemptive approach to address the growing global population and the increasing number of internet users.

Article Source: 400G Optics in Hyperscale Data Centers

Related Articles:

How Many 400G Transceiver Types Are in the Market?

Global Optical Transceiver Market: Striding to High-Speed 400G Transceivers