Do You Know About Fiber Optic Splitter?

In today’s optical network topologies, the advent of fiber optic splitter is significant in helping users maximum the performance of optical network circuits. Fiber optic splitter, or sometimes called as beam splitter, is a passive optical component that can split an incident light beam into two or more light beams, and vice versa. The device contains multiple input and output ends. Whenever the light transmission in a network needs to be divided, fiber optic splitter can be implemented for the convenience of network interconnections.


How Does Fiber Optic Splitter Work?

As for the working principle of fiber optic splitter, it can be generally described in the following way. When the light signal transmits in a single-mode fiber, the light energy can not entirely concentrated in the fiber core. A small amount of energy will be spread through the cladding of fiber. That is to say, if two fibers are close enough to each other, the transmitting light in an optical fiber can enter into another optical fiber. Therefore, the reallocation technique of optical signal can be achieved in multiple fibers. And this is how fiber optic splitter comes into being.

Classification of Fiber Optic Splitter

At present, there are two types of fiber optic splitters. One is known as PLC (planar lightwave circuit) splitter, and another one is known as FBT (fused biconical taper) splitter.

1) PLC splitter divides the incoming signal into multiple outputs by using an optic splitter chip. One optic splitter chip is able to achieve at most 64 ends. PLC splitter is usually used for larger applications. The losses of PLC splitter are not sensitive to the wavelength, which satisfies the need for multiple wavelengths transmission. PLC splitter’s configuration is compact and its size is small, thus the installation space can be greatly saved.

2) FBT splitter is fused with a heat source similar to a one-to-one fusion splice. Fibers are stretched under a heating zone to form a double cone. The cost of FBT splitter is lower due to the commonly used materials, and the splitting ratio is adjustable. But the losses are sensitive to wavelengths. Device should be chosen according to wavelengths. And it is unable to offer the uniform spectroscopy.


1) Passive monitoring application of fiber optic splitter is used for the maintenance of long-haul network, cable TV ATM circuit or local area/metro area network. The splitter taps into a small percentage of optical traffic. Majority of the signal arrives its destination, but a small percentage is directed to a local access port. The application can be done by manual operation for troubleshooting purposes or by connecting the splitter to a network monitoring system for ongoing maintenance and performance assessment.

2) Fiber optic splitter can also be used for FTTx/PON application. This enables to reduce the physical fiber usage or the basic quantity of required fibers. A single fiber can be split into many branches to support multiple end users. The strain on the fiber backbone can be greatly decreased through the application.


To sum up, fiber optic splitter provides a solution for improving the efficiency of optical infrastructures. PLC splitter and FBT splitter are varied in different aspects, hence choosing the right type of splitter for your network is also important. FS.COM provides all the above fiber optic splitters. Please visit FS.COM for more information.

Related Article: 10GBASE-T Cabling Vs. 10G SFP+ Cabling in 2017