How can I tell if my SFP is 1G or 10GB?

Small Form-Factor Pluggable (SFP) optical modules play a crucial role in modern networking environments, providing the flexibility and scalability necessary for efficient data transmission. Understanding the differences between 1G and 10G SFP modules is essential for network administrators and technicians to optimise network performance and ensure compatibility. In this blog post, we’ll delve into the fundamentals of SFP optical modules and explore various methods to distinguish between 1G and 10G SFPs.

Introduction to SFP Optical Modules

SFP optical modules, also known as Mini-GBIC (Gigabit Interface Converter), are hot-swappable transceivers commonly used in networking equipment. They facilitate the transmission of data over optical fibre cables and support various data rates and communication protocols, making them versatile components in modern networks.

What is a 1g SFP module?

A 1G SFP module, also known as a 1-gigabit small form-factor pluggable module, is a type of transceiver used in telecommunications and data communications for both telecommunication and data communications applications. It is designed to support communication over fibre optic or sometimes copper networking cables at speeds up to 1 gigabit per second (Gbps).There are many types of 1G SFP optical modules, mainly including single-mode and multimode. The single-mode optical module is suitable for long-distance transmission, while the multimode optical module is suitable for short-distance transmission. Additionally, there are differences between various brands and models of 1G SFP optical modules, such as the supported maximum distance, wavelength, interface type, etc., which need to be selected according to specific requirements.

What is a 10g SFP module?

The 10G SFP module, also known as a 10Gb small pluggable transceiver, is an upgraded version of the standard SFP module that supports data rates up to 10Gb per second. It usually consists of components such as packaging, interfaces, optical transceivers, and circuit boards, and transmits data between multimode and single-mode fibres through SFP + slots connected to network devices such as switches or routers. Compared with the 1G module, it is designed to handle larger bandwidths, making it very suitable for high-speed data transmission applications.

How to Differentiate Between 1G and 10G SFP+

Physical Identification

One of the primary methods to differentiate between 1G and 10G SFP modules is through physical identification. Manufacturers often label SFP modules with clear markings indicating their speed compatibility, such as “1G” or “10G”. These labels are typically located on the front or top surface of the module and provide a quick reference for identifying the speed rating.

Configuration Check

Another method involves checking the configuration settings of the SFP module within the networking device. Network administrators can access the device’s management interface and view the configured speed of the SFP port. This method provides direct insight into the operational speed of the SFP module.

Optical Power Detection

Optical power detection is a practical approach to differentiating between 1G and 10G SFP modules. By measuring the optical power output of the SFP module using a power meter or optical time-domain reflectometer (OTDR), technicians can determine whether the module operates at 1G or 10G speed. Higher optical power levels typically indicate 10G operation.

Spectrum Analysis

Spectrum analysis involves examining the spectral characteristics of the optical signal transmitted by the SFP module. Technicians can use optical spectrum analysers to analyse the frequency components of the signal and identify patterns associated with specific data rates, such as 1G or 10G. This method provides a comprehensive understanding of the SFP module’s operational characteristics.
In summary, differentiating between 1G and 10G SFP modules requires a combination of physical identification, configuration checks, optical power detection, and spectrum analysis. Network administrators and technicians should leverage these methods collectively to accurately identify the speed of SFP modules within their network infrastructure. By understanding the capabilities of SFP modules, organisations can optimise network performance and ensure seamless compatibility in diverse networking environments.

Summary

Mastering SFP management is crucial for robust, efficient networks. Knowing how to distinguish between 1G and 10G SFPs enables better network setup and performance. If you require assistance in selecting the most suitable product, feel free to consult our sales team for expert guidance.

Related Articles:

SFP-10G-SR vs SFP-10G-LRM vs SFP-10G-LR, Which to Choose?

Is SFP Compatible With SFP+? Can 10G SFP+ Run at 1G SFP Gigabit Switch Port?

FS 10G BiDi SFP+ Transceiver Solution

FS 10G BiDi SFP+ transceiver offers a cost-effective solution for transmitting and receiving signals over a single-strand fibre. It effectively utilizes existing fibre deployments, maximizing capacity and bandwidth for 10 Gigabit Ethernet.


Figure 1: FS 10GBASE BiDi SFP+

Features and Specifications

Utilising WDM technology, FS 10G BiDi SFP+ transceiver features a single fibre port directly on the transceiver itself. This technology employs two distinct wavelengths: one for upstream and one for downstream communication, enabling bidirectional data transmission over a single fibre. FS 10G BiDi SFP+ transceivers are offered in four configurations: 1270nm-TX/1330nm-RX, 1330nm-TX/1270nm-RX, 1490nm-TX/1550nm-RX, and 1550nm-TX/1490nm-RX. Detailed parameters are outlined in the chart below:

WavelengthMax. Data RateAvailable DistanceConnectorOptical ComponentsDOM SupportProtocols
1270nm-TX/1330nm-RX10.3125Gbps10km, 20km, 40km, 60kmLC simplexDFB BiDiYesSFP+ MSA Compliant, CPRI, eCPRI
1330nm-TX/1270nm-RX10.3125Gbps10km, 20km, 40km, 60kmLC simplexDFB BiDiYesSFP+ MSA Compliant, CPRI, eCPRI
1490nm-TX/1550nm-RX10.3125Gbps80km, 100kmLC simplexDFB BiDiYesSFP+ MSA Compliant, CPRI, eCPRI
1550nm-TX/1490nm-RX10.3125Gbps80km, 100kmLC simplexDFB BiDiYesSFP+ MSA Compliant, CPRI, eCPRI

Note: BiDi transceivers must be used in pairs, which means if you use 1270nm-TX/1330nm-RX at one end, the other end of the link must be a 1330nm-TX/1270nm-RX transceiver.

Platform Support

FS 10G SFP+BiDi transceivers support multiple device brands including Cisco, Juniper, Brocade, Dell, Extreme, HW, Ciena, FS and other switch vendors.

BrandSeriesModel
FSS5850 SeriesT5850-48S6Q-R
CiscoWS SeriesWS-C4500X-24X-ES
CiscoWS SeriesWS-C3850-48XS-F-E
CiscoWS SeriesWS-X4904-10GE
CiscoNexus SeriesNexus 9000 N9K-C9396PX
CiscoNexus SeriesNexus 7000 N77-F348XP-23
CiscoASR SeriesASR 9000 A9K-RSP440-TR

Application

FS BiDi SFP+ transceivers are designed for long-haul 10Gb links. Nowadays, many enterprises and campuses are using BiDi transceivers to replace the legacy duplex SFP+ transceivers. Especially for campus environments requiring fibre connectivity to a large number of endpoints, FS brings the solution. The following figure shows a common 10G link between SFP+ switches via BiDi SFP+ transceivers and an LC simplex cable.

Ordering Information

Plenty of 10G BiDi SFP+ transceivers inventory is available in FS global warehouses. Customised product compatible brand, transmission distance, and wavelength are provided. For more available brands or series of products, please check out the product page or contact your account manager.

Related Articles:

SFP-10G-SR vs SFP-10G-LRM vs SFP-10G-LR, Which to Choose?

Is SFP Compatible With SFP+? Can 10G SFP+ Run at 1G SFP Gigabit Switch Port?

FS 10G XFP Transceiver Solution

FS offers a variety of 10G transceiver form factors, such as SFP+, XFP, X2, and XENPAK, catering to diverse 10G links. The 10G XFP transceivers are compatible with an extensive array of switches, routers, and other equipment from various vendors.

FS 10G XFP Transceiver FS 10G X2 Transceiver FS 10G XENPAK Transceiver

Figure 1: FS 10G XFP/X2/XENPAK Transceiver

Features and Specifications

FS 10G XFP transceivers come in various types: standard XFP transceivers, BiDi XFP transceivers, CWDM transceivers, DWDM transceivers, and DWDM tunable transceivers. All variants feature DOM capabilities. Below are the specifications for each transceiver form factor.

Table 1: Regular XFP Transceiver Specifications

Form FactorWavelengthMax Cable DistanceConnectorMediaOptical ComponentsProtocols
10G XFP SR850nm300m over OM3 MMFLC duplexMMFVCSEL 850nmSFP+ MSA Compliant, CPRI, eCPRI
10G XFP LRM1310nm220m over OM3 MMFLC duplexMMFFP 1310nmSFP+ MSA Compliant, CPRI, eCPRI
10G XFP LRM1310nm2kmLC duplexSMFFP 1310nmSFP+ MSA Compliant, CPRI, eCPRI
10G XFP LR1310nm10kmLC duplexSMFDFB 1310nmSFP+ MSA Compliant, CPRI, eCPRI
10G XFP ER1550nm40kmLC duplexSMFEML 1550nmSFP+ MSA Compliant, CPRI, eCPRI
10G XFP ZR1550nm80kmLC duplexSMFEML 1550nmSFP+ MSA Compliant, CPRI, eCPRI
10G XFP ZRC1550nm100kmLC duplexSMFEML 1550nmSFP+ MSA Compliant, CPRI, eCPRI

Table 2: BiDi/CWDM/DWDM XFP transceiver specifications

Form FactorWavelengthMax Cable DistanceConnectorMediaOptical ComponentsProtocols
10G BiDi XFP1270nm-TX/1330nm-RX;1330nm-TX/1270nm-RX10km, 20km, 40km, 60km, 80kmLC simplexSMFDFB BiDiSFP+ MSA Compliant, CPRI, eCPRI
10G CWDM XFP1270nm~1610nm20km, 40km, 80kmLC duplexSMFDFB CWDMSFP+ MSA Compliant, CPRI, eCPRI
10G DWDM XFPC17~C6140km, 80kmLC duplexSMFEML DWDMSFP+ MSA Compliant, CPRI, eCPRI

Platform Support

FS 10G XFP transceivers are compatible with a diverse array of equipment, encompassing Cisco, Juniper, Brocade, Dell, Extreme, HW, Ciena, FS and various other switch vendors. Below are listed some of the equipment models that FS 10G XFP transceivers support.

BrandSeries
CiscoCisco ASR 9000 Series, Cisco 7600 Series, Cisco CRS Series, Cisco SCE8000 Series, Cisco SPA Series
JuniperJuniper MX960 Series
BrocadeBigiron RX Series, Netiron Series, Fastiron FGS Series, Netiron MLX Series, Netiron CES 2000 Series, Fastiron FESX Series, Fastiron X Series, Netiron CER 2000 Series

Ordering Information

Plenty of 10G XFP transceivers inventory is available at FS global warehouses. Apart from XFP transceivers, we also carry other form factors such as X2 and XENPAK. For further information on available brands or product series, please visit FS.com or reach out to your account manager.

Related Articles:

SFP-10G-SR vs SFP-10G-LRM vs SFP-10G-LR, Which to Choose?

Is SFP Compatible With SFP+? Can 10G SFP+ Run at 1G SFP Gigabit Switch Port?

10GBASE-T Cabling Vs. 10G SFP+ Cabling in 2017

When it comes to 10G cabling network, we usually make a choice between 10GBASE-T cabling and 10G SFP+ cabling. In fact, many people still prefer 10G SFP+ cabling that uses SFP+ DAC cable, because they think it matches better for the requirements and emerging trends of today’s data center. Now the 10G network is quickly becoming mainstream, especially on consumer desktop systems. That means the cost of 10GBase-T switches will need to come down. Also, other “IOT” home components that decide to offer 10G will probably go for 10GBASE-T, such as game consoles, streaming boxes, etc. So, do you still recommend 10G SFP+ over 10GBASE-T nowadays for 10G cabling network deployment? This article will discuss this topic.

Vote for 10GBASE-T

  • The 10GBASE-T ports are physically smaller which is important for non-data center devices. They are also easier to use. You just plug in an ethernet cable and it works. No need to deal with optical transceiver compatibility and all of those problems.
  • The 10GBASE-T cabling is backwards compatible with 1G ports which will still be used for things like IPMI and other low bandwidth devices. You could just get one 10GBASE-T switch and connect up everything you have to it. Going with 10G SFP+ makes it difficult to find something that juggles enough of both kinds of ports for all of your 10G and 1G devices.

Vote for 10G SFP+

  • 10G SFP+ is better for future-proof cabling system. You can migrate to 40G QSFP+ smoothly and keep the existing cables. Even OM4 can do 100Gbps up to 150 meters. It is not known if Cat6a, Cat7 or even Cat8 will be able to pull off anything above 10Gb. And this will be stuck at 10G for quite some time.
  • 10G SFP+ interface that has been widely deployed for 10G ToR switches continues to use less power, typically less than 1 W per port. It also offers better latency—typically about 0.3 microseconds per link. While 10GBASE-T latency is about 2.6 microseconds per link due to more complex encoding schemes within the equipment.
  • 10GBASE-T switches are still expensive and there is a very limited choice of those that actually work. Also 10GBASE-T NICs add a premium over 10G SFP+. From a cost perspective, it is cheaper to go the 10G SFP+ cabling since you can find so many used 10G switches for deals, along with decent NICs. In addition, there is more support, driver wise for 10G SFP+ NICs than 10GBASE-T.

By comparison, we find that if flexibility and scalability are more important, 10GBASE-T cabling is a better option; but if power consumption and lower latency are critical, 10G SFP+ cabling may be more suitable. We also find that the cost of 10GBASE-T cabling is no longer in the ascendant. If 10GBASE-T want to acquire an absolute advantage, the primary goal now is to get 10GBASE-T cheaper and more power efficient and bring the cost way down so it can finally replace Gigabit as the next base level networking.

A Third Choice for 10G Cabling

If you do not have to choose vanilla or chocolate, you could have both 10GBASE-T and 10G SFP+ in the same switch, such as Ubiquiti EdgeSwitch 16 XG and UniFi Switch 16 XG. Both of them feature twelve 10G SFP+ ports and four RJ45 10GBASE-T ports to efficiently deliver and aggregate data at 10G speeds. But some people point out that the 10GBASE-T ports on the Ubiquiti switches actually don’t work reliably at 10Gbps speed. Therefore, before you buy it for those four RJ45 10GBASE-T ports, you have to make sure that they can work without issues. Here is a figure of them for you.

Ubiquiti EdgeSwitch 16 XG and UniFi Switch 16 XG

Conclusion

If you were building out a 10G cabling system from scratch today, which technology would you choose for your 10G network connectivity? Both the two cabling have their own advantages. And both of them occupy an important position in the future of network design and best practices. As for which one to choose, it all depends on your specific need. FS.COM can provide cost-effective solution for your 10G network deployment, such as Cat5e bulk cable, 10G SFP+ transceiver, 10G SFP+ DAC cable, 10GBASE-T SFP+ Transceiver and so on. For more details, please visit our site.

Related Article: 

Choose 10GBASE-T Copper Over SFP+ for 10G Ethernet

10GBASE-T vs SFP+, Which is Preferred for 10G Network Cabling

100G Optical Transceiver Solutions

Network has been rapidly developed over the years. People are always dreaming of entering into the world of higher bandwidth. And now the dream has come true since we already reach the 100 gigabit Ethernet (100 GbE) networking. This technology enables the transmission at rates of 100 gigabits per second (100 Gbit/s). The standard was first defined by the IEEE 802.3ba in 2010. To accommodate the trend, different types of 100G optical transceiver emerge as a reflection of the development. QSFP28 (quad small form-factor pluggable 28), CFP (centum form-factor pluggable) and CXP (centum extended-capability form-factor pluggable) are most commonly used optical transceiver solutions for 100G active equipment. Today, the article will mainly introduce these three solutions.

100G Optical Transceiver Solutions
CFP

Specified by a multi-source agreement (MSA) between competing manufacturers, CFP was designed to replace many former transceivers like SFP+, SFP, XFP with a significantly larger support of 100 Gbps. The electrical connection of a CFP uses 10 x 10Gbps lanes in each direction (RX, TX). The optical connection can support both 10 x 10Gbps and 4 x 25Gbps variants. In addition, there are another two CFP next-generation 100G form factors — CFP2 and CFP4. Compared to the existing CFP, CFP2 and CFP4 are respectively double and quadruple front panel port density. All of them are now available on the market.

CFP

QSFP28

QSFP28 transceiver is designed for 100G Ethernet which uses the 4 x 25 wiring specification. It has the same size as 40G QSFP+ but with a higher performance. The 100G QSFP28 is implemented with four 25Gbps lanes. “28” stands for the highest possible rate of 4x28Gbps in transmission. Two basic versions of QSFP28 transceivers are 100GBASE-SR4 QSFP28 transceiver and 100GBASE-LR4 QSFP28 transceiver, which are respectively used for multimode fiber (MMF) and single-mode fiber (SMF) 100G applications. 100GBASE-SR4 QSFP28 operates at multimode fiber for a distance of 100 m. 100GBASE-LR4 QSFP28 can support a much longer distance of 10 km.

qsfp28
100GBASE-LR4 QSFP28

CXP

As a complement to CFP, CXP is also specified by MSA aiming at the clustering and high-speed computing markets. CXP has a higher density network interface with 45 mm in length and 27 mm in width, making it slightly larger than an XFP or 1/4 size of a CFP transceiver. It has a form-factor pluggable active device interface with 12 transmit and 12 receive lanes, capable of supporting bit-rates in excess of 10 Gbps per lane on a variety of optical transmission technologies.

cxp

Future Trend of Optical Transceivers in Data Centers

In the future, higher bit rates over 100G are the inevitable trend in data centers. The next data center developments will be following the 4x trend set by 40G and 100G, such as 200G, 400G, etc. Accordingly, optical transceivers should keep up with the steps and satisfy higher demands.

In 200G applications, next generation switching ASICs (Application Specific Integrated Circuits) are expected to have native port speeds of 50G and 128 ports, which correspond to a net throughput of 6.4 Tbps. This means that 200G QSFP modules (QSFP56, 4 x 50 Gbps) would result in a front panel bandwidth of 6.4 Tbps (32 x 200 Gbps).

For 400G applications, the module must accommodate either 16 x 25G or 8 x 50G electrical input lanes, which exceeds the 4 lanes defined for the QSFP. 400G transceivers will have larger size than QSFP. However, meeting the 3.5W power limit of QSFP modules appears infeasible for some 400G implementations. Thus, proposals for larger form factors for 400G can be anticipated from CFP MSA, which has had large success in 100G with CFP, CFP2, and CFP4. In this case, a key requirement will be that the size allows for at least 16 ports on the front panel in order to satisfy a net throughput of 6.4 Tbps (16 x 400 Gbps, and possibly more).

Conclusion

The market of 100G optical transceivers is accelerating. It is no doubt that more 100G transceivers and other assemblies will be deployed in data centers. QSFP28, CFP series and CXP are presently the most suitable solutions for 100G applications. Definitely one of them can solve your project needs.