Photonic Integrated And High-speed Optical Interconnection Technology

Currently, in the field of active optical devices, high-speed optical communication (40G/100G), broadband access FTTH, 3G and LTE wireless communication, high-speed optical interconnection, chips applied in intelligent Fiber Optic Network, device and module technologies are competing to become the hot spots of development. And the photonic integrated, high-speed optical signal modulation technique, high-speed optical device packaging technology, as the representative of the optical device platform technology are also increasingly being valued by the majority of OC manufacturers.

The Technology Development And Breakthrough Of Active Optical Devices

To meet the growing demand for bandwidth, while continuing to reduce the capital, operation and maintenance expenses, will continue to be the two main driving force to promote the development of optical communication technology. In order to meet the evolving needs of the system, the development of active optical communication device involves many technologies, however, in recent years there are several technologies deserve special attention, including 40G/100G high speed transmission device and module technology, the next generation fiber access technology, ROF (Radio Over Fiber) components and module technology, optical integration technology, high-speed interconnect optoelectronic components and modules, etc.

Optical Integration Technology Is Worth Looking Forward

Optical integrated devices due to its low cost, small, easy to large-scale assembly, high work rate, stable performance and other advantages, as early as the 1970s, it caused the world’s attention and research. In the ensuing three decades, with the rapid development of optical waveguide production technology and a variety of fine processing technology, optical integrated devices are heavily into the business, particularly some optical passive components based on Planar Lightwave Circuit (PLC), such as Planar Lightwave Circuit Splitter, arrayed waveguide grating (AWG) and so on, have become hot products in optical communication on the market. In the field of optical active devices, the active integration products are still far from large-scale commercial, but with the successful development of some advanced technologies such as Dispersion Bridge Grating, active devices based on PLC recently made great progress.

The develop direction of optical integration technology can be divided into two categories: monolithic and hybrid integration. Monolithic integration refers to the semiconductor or optical crystal substrate, over the same production process, integrating all the components together, such as: PIC and OEIC technology; the hybrid integration refers to through different production processes, making part of the components, then assembled in the semiconductor or optical crystal substrate.

Previously, the actual production process of Si-based hybrid integration has been quite complex, but recently, a number of research institutions had improved the traditional hybrid integration technology based on flip, and made great progress. Among them, the most remarkable achievements include two items: The first is the University of California at Santa Barbara, in cooperation with Intel company researched hybrid integrated device based on Wafer level; second is the Ghent University based chip and the wafer hybrid integrated devices.

In recent years, the development of optical integration technology, making it quickly became a very worth looking forward platform technology in optic communication, is expected to be widely applied.

High-speed Optical Interconnection Technology Beyond Imagination

High speed optical interconnection technology is realized by parallel Fiber Transceiver and Ribbon Cable or fiber optic cable. Parallel optical module is based on VCSEL array and PIN array,wavelength of 850nm, suitable for 50/125 μm and 62.5/125 μm multimode fiber. Its electrical interface uses standard MegArray connectors in package, optical interface uses standard MTP/MPO ribbon cable. At present more common parallel optical transceiver module has 4 channels and 12 channels. In the current market, the more common high-speed parallel optical modules include: 4 × 3.125Gb/s (12.5Gb/s) parallel optical module, applications such as high-end computer systems, blade servers short distance interconnection; 12 × 2.725Gb/s (32.7Gb/s) parallel optical module, used in high-end switching equipment as well as backplane connection. Parallel optical module applications are gradually becoming more mature.

At present, the rise of applications such as super computer, cloud computing, short-distance high-speed data communication, directly promoting the rapid development of high-pspeed optical interconnection technology, its size of the market and technology development will beyond people’s imagination.