How Much Do You Know About QSFP56?

Over the past years, there have emerged various optical module form factor types with the growth of new technology and high-speed interconnects, among which QSFP56, as a member of the QSFP family, is a solution for 200G applications. What‘s the difference between QSFP56 with other QSFP family form factors? Is QSFP56 the same as QSFP56-DD? If you are wondering about these questions, this article is for you.

Figure 1: Transceiver form factor

QSFP56—Form Factor of 200G Transceivers

To make clear what QSFP56 is, let’s take a look at the QSFP form factor first. Quad Small Form-Factor Pluggable (QSFP) was developed after SFP, which was originally designed to replace the single-channel SFPs with high-density optical modules. Due to the fact that it denotes four lanes for up to 4 wavelengths, it provides higher bandwidth capacity compared with the SFP modules.

Developed on the basis of QSFP, 40G QSFP+ arose and then 100G QSFP28 came into use for high-density applications. With the rising of data traffic in data centers and advanced network applications, the market is urgent to achieve higher-speed general availability. There is more addition to QSFP family form factors, such as 200G QSFP56 and 400G QSFP56-DD.

Figure 2:Types of QSFP form factor

As an evolution of the previous 40G QSFP+ and 100G QSFP28, Quad 50 Gigabits Small Form-factor Pluggable (QSFP56) is the one designed for 200G Ethernet. QSFP56 denotes 4 x 50 to 56Gb/s in a QSFP form factor. Sometimes it can also be referred to as 200G QSFP for sake of simplicity. QSFP56 optical modules are similar to QSFP ones in terms of size and form factor. Classified by distance, QSFP56 modules can be divided into QSFP56 CR, SR, DR, FR, LR, which enables different transmission distances over a single mode fiber (SMF) or multimode fiber (MMF).

Generally, two QSFP56 modules can be used with an SMF or MMF to realize a 200G link. QSFP56 AOC/DAC is also a way to realize a 200G link by connecting QSFP56 ports on two devices in a simplified linking process. For bridging 200G QSFP56 ports with other speeds, there are 200G QSFP56 to 2x100G QSFP28 breakout cables and 200G QSFP56 to 4x50G SFP56 breakout cables to achieve 2x100G or 4x50G connections.

QSFP56 vs QSFP28 vs QSFP+

Seen from their industry names, QSFP56, QSFP28 and QSFP+ are very similar in that they share the same QSFP form factor as their postfix shows, and they have the same size as each other. However, their data center and connectivity capabilities are different. Below is a table listing the basic parameters of QSFP56, QSFP28, and QSFP+.

Industry nameYearoriginal meaningNumber of Electric LanesNumber of Optical LanesBit Rate/LaneModulationLine Rates
QSFP+2013Quad Small Form-factor Pluggable Plus4410GbpsNRZ40G
QSFP282016Quad Small Form-factor Pluggable 284425GbpsNRZ100G
QSFP562017Quad 50 Gigabits Small Form-factor Pluggable4450GbpsPAM4200G

From the comparison chart, it can be distinctly seen that compared with QSFP+ and QSFP28, the QSFP56 form factor performs a higher network speed as 200G QSFP supporting 4×50G channels. While QSFP+ is an evolution of QSFP to support 4×10G channels carrying 10G Ethernet, 10G fiber channel or QDR InfiniBand. It introduced the concept of multiplexing four lanes to increase the bandwidth, capable of handling 40Gbps line rates at 10GBaud NRZ per lane. QSFP28 supports 4×25G channels and contains 4-lane optical transmitter and 4-lane optical receiver as QSFP+ does.

The most significant change from QSFP+ and QSFP28 to QSFP56 is that QSFP56 made the change from NRZ encoding to PAM4 encoding. Though QSFP56 still uses 4 lanes as QSFP28, the modulation is doubled to 50G per channel, which enables more data on existing fiber, accordingly, more suitable for hyper-scale data center networks.

Shift from QSFP56 to QSFP56-DD (400G QSFP-DD)

With data centers undergoing rapid growth, the rising demand for data volume is pushing network components to support higher bandwidth and higher density. The latest iteration of optical module form factor is from QSFP56 to QSFP56-DD, which is also called 400G QSFP-DD. DD here refers to double density, representing reaching 400G (with 50G PAM4) by doubling data lanes of QSFP56, from 4 lanes to 8 lanes.

Though QSFP56-DD has the double density, its size is similar to QSFP56. 400G QSFP56-DD port is backward compatible with the QSFP transceiver which means as long as the switch supports, QSFP56 can work on the QSFP56-DD port. When using a QSFP56 module in an QSFP56-DD port, this port will be configured for a data rate of 200G, instead of 400G.

The QSFP56-DD form factor is now recognized by the 400G market as the 400G form factor that gets the most concern. Despite that nowadays 400G Ethernet is seen as a futureproofing solution for the next-generation data center, there is still a need for 200G QSFP56 for some organizations deploying 200G Ethernet.

Article Source

https://community.fs.com/blog/introduction-to-qsfp56-form-factor.html

Related Articles

https://community.fs.com/blog/differences-between-qsfp-dd-and-qsfp-qsfp28-qsfp56-osfp-cfp8-cobo.html

https://community.fs.com/blog/400g-qsfp-dd-transceiver-types-overview.html

400G Transceiver Test – How Does It Ensure the Quality of Optical Modules?

400G

Higher bandwidth requirements are enhancing the need for 400G optical modules in the large data center interconnections. And a series of tests is significant to ensure the high quality of the 400G transceivers. This article will introduce the 400G transceiver test from three aspects: challenges, key items, and opportunities.

Challenges of 400G Transceiver Test

The electrical interfaces of 400G transceivers use either 16× 28Gb/s with NRZ (non-return to zero) modulation or the newer 4 or 8× 56Gb/s with PAM4 (4-level pulse amplitude) modulation. Higher speeds and the utilization of PAM4 do bring great improvements but also result in high complexity at the physical layer, causing signal transmission errors easily and bringing challenges for optical module vendors.

High Complexity at the Physical Layer

On the physical appearance layer, the high-speed interfaces of 400G optical modules include more electrical input/output interfaces, optical input/output interfaces, and other power and low-speed management interfaces. And all the performance of these interfaces should be made to a complaint of 400G standards. As the size of 400G transceivers is similar to the existing 100G transceivers, the integration of those interfaces needs more sophisticated manufacturing technology.

Signal Transmission Errors

The higher lane speed in 400G electrical interfaces means more noise (also called signal-to-noise ratio) in signal transmission, causing an increased bit error rate (BER), which in turn affects the signal quality. Therefore, corresponding performance tests should be taken to ensure the quality of 400G modules.

Development & Manufacturing Test Costs

The complex 400G transceiver test also brings new challenges for the optical module vendors. To ensure the transceiver quality for users, vendors have to attach great importance to the transceiver test equipment and R&D technical. They should ensure that the new products can support 400G upgrade while dampening associated development and manufacturing test costs that may hamper competitive pricing models.

Key Items in 400G Transceiver Test

For transceiver vendors, product quality testing is fundamental to building reliable connections with customers. Let’s have a look at the key items in the 400G transceiver test. For more detailed information, please visit the 400G QSFP-DD Transceivers Test Program.

ER Performance and Optical Power Level Tests

ER (extinction ratio), the optical power logarithms ratio when the laser outputs the high level and low level after electric signals are modulated to optical signals, is an important and the most difficult indicator to measure the performance of 400G optical transceivers. The ER test can show whether a laser works at the best bias point and within the optimal modulation efficiency range. OMA (outer optical modulation amplitude) can measure the power differences when the transceiver laser turns on and off, testing 400G transceivers’ performance in another aspect. Both the ER and the average power can be measured by mainstream optical oscilloscopes.

Optical Spectrum Test

The optical spectrum test is mainly divided into three parts: center wavelength, side mode suppression ratio (SMSR), and spectrum width of the 400G transceivers. All of these three parameters are essential for keeping a high-quality transmission and performance of the modules. The larger the value of the side mode suppression ratio, the better the performance of the laser of the module. Watch the following video to see how FS tests the optical spectrum for 400G QSFP-DD transceivers.https://www.youtube.com/embed/xMwbi85Hlig?rel=0&showinfo=0&enablejsapi=1&origin=https%3A%2F%2Fcommunity.fs.com

Forwarding Performance Tests

400G transceiver has a more complicated integration compared with the existing QSFP28 and QSFP+ modules, which puts higher requirements for the test of its forwarding performance. RFC 2544 defines the following baseline performance test indicator for networks and devices: throughput, delay, and packet loss rate. In this test procedure, the electrical and optical interfaces will be tested and make sure the signal quality they transmitted and received will not get distortion.

Eye Diagram Test

Different from the single eye diagram of NRZ modulation in 100G optical transceivers, the PAM4 eye diagram has three eyes. And PAM4 doubles the bit bearing efficiency compared with NRZ, but it still has noise, linearity, and sensitivity problems. IEEE proposes using PRBS13Q to test the PAM4 optical eye diagram. The main test indicators are eye height and width. By checking the eye height and width in the test result, users can tell if the signal linearity quality of the 400G transceiver is good or not.

Comparison of waveforms and eye diagrams between NRZ and PAM4 signals.png

The following video shows how FS tests 400G QSFP-DD-SR8 transceivers’ eye pattern with Anritsu MP2110A All-in-One BERT and Sampling Oscilloscope to ensure the QSFP-DD transceivers’ signal quality.https://www.youtube.com/embed/DlfMLDy6VmY?rel=0&showinfo=0&enablejsapi=1&origin=https%3A%2F%2Fcommunity.fs.com

Jitter Test

The jitter test is mainly designed for the output jitter of transmitters and jitter tolerance of receivers. The jitter includes random jitter and deterministic jitter. Because deterministic jitter is predictable when compared to random jitter, you can design your transmitter and receiver to eliminate it. In a real test environment, the jitter test is operated together with the eye diagram test to check the 400G transmitter and receiver performance.

Bit Error Rate Test in Real Working Condition

In this testing procedure, 400G optical transceivers will be plugged into the 400G switches to test their working performance, BER, and error tolerance ability in a real environment. As mentioned above, the higher BER in 400G optical transceiver lanes leads to transmission problems in most 400G links. Therefore, FEC (forward error correction) technology is applied to improve signal transmission quality. FEC provides a way to send and receive data in extremely noisy signaling environments, making error-free data transmissions in 400G link as possible. How FS tests the BER of 400G QSFP-DD modules is displayed in the following video to ensure the stability and reliability of the transmission.https://www.youtube.com/embed/KJ7eWECtZ54?rel=0&showinfo=0&enablejsapi=1&origin=https%3A%2F%2Fcommunity.fs.com

Temperature Test

Each 400G transceiver module comes with a vendor-defined operating temperature range. If the temperature exceeds or beyond the normal temperature range, then the modules will fail to perform well or even won’t operate normally, and even lead to delays or network breakdowns. So the temperature test is also essential for the transmission performance of transceivers. This is to guarantee the reliability of these high-speed 400G transceivers used within the high-speed communication network and data centers. The video below shows how FS tests its 400G QSFP-DD modules at different temperatures.https://www.youtube.com/embed/CgwfapEcU2o?rel=0&showinfo=0&enablejsapi=1&origin=https%3A%2F%2Fcommunity.fs.com

Opportunities in 400G Transceiver Test

Driven by 5G, artificial intelligence (AI), virtual reality (VR), Internet of Things (IoT), and autonomous vehicles, though multiple technical transceiver test issues are needed to be resolved, the booming trend of the 400G Ethernet market cannot stop. Lots of manufacturers and test solution providers have promoted their own 400G product solutions to the market. Under this situation, for some smaller optical module vendors, the 400G transceiver test is one of the key points they should consider, because how to improve the quality of the 400G products and supply speed will determine how much profit they get from the 400G market. Know more about What’s the Current and Future Trend of 400G Ethernet? to prepare for the coming fast-speed era.

Original Source: 400G Transceiver Test – How Does It Ensure the Quality of Optical Modules?

FAQs on 400G Transceivers and Cables

400G transceivers and cables play a vital role in the process of constructing a 400G network system. Then, what is a 400G transceiver? What are the applications of QSFP-DD cables? Find answers here.

FAQs on 400G Transceivers and Cables Definition and Types

Q1: What is a 400G transceiver?

A1: 400G transceivers are optical modules that are mainly used for photoelectric conversion with a transmission rate of 400Gbps. 400G transceivers can be classified into two categories according to the applications: client-side transceivers for interconnections between the metro networks and the optical backbone, and line-side transceivers for transmission distances of 80km or even longer.

Q2: What are QSFP-DD cables?

A2: QSFP-DD cables contain two forms: one is a form of high-speed cable with QSFP-DD connectors on either end, transmitting and receiving 400Gbps data over a thin twinax cable or a fiber optic cable, and the other is a form of breakout cable that can split one 400G signal into 2x 200G, 4x 100G, or 8x 50G, enabling interconnection within a rack or between adjacent racks.

Q3: What are the 400G transceivers packaging forms?

A3: There are mainly the following six packaging forms of 400G optical modules:

  • QSFP-DD: 400G QSFP-DD (Quad Small Form Factor Pluggable-Double Density) is an expansion of QSFP, adding one row to the original 4-channel interface to 8 channels, running at 50Gb/s each, for a total bandwidth of 400Gb/s.
  • OSFP: OSFP (Octal Small Formfactor Pluggable, Octal means 8) is a new interface standard and is not compatible with the existing photoelectric interface. The size of 400G OSFP modules is slightly larger than that of 400G QSFP-DD.
  • CFP8: CFP8 is an expansion of CFP4, with 8 channels and a correspondingly larger size.
  • COBO: COBO (Consortium for On-Board Optics) means that all optical components are placed on the PCB. COBO is with good heat-dissipation and small-size. However, since it is not hot-swappable, once a module fails, it will be troublesome to repair.
  • CWDM8: CWDM 8 is an extension of CWDM4 with four new center wavelengths (1351/1371/1391/1411 nm). The wavelength range becomes wider and the number of lasers is doubled.
  • CDFP: CDFP was born earlier, and there are three editions of the specification. CD stands for 400 (Roman numerals). With 16 channels, the size of CDFP is relatively large.

Q4: What 400G transceivers and QSFP-DD cables are available on the market?

A4: The two tables below show the main types of 400G transceivers and cables on the market:

400G TransceiversStandardsMax Cable DistanceConnectorMediaTemperature Range
400G QSFP-DD SR8QSFP-DD MSA Compliant70m OM3/100m OM4MTP/MPO-16MMF0 to 70°C
400G QSFP-DD DR4QSFP-DD MSA, IEEE 802.3bs500mMTP/MPO-12SMF0 to 70°C
400G QSFP-DD XDR4/DR4+QSFP-DD MSA2kmMTP/MPO-12SMF0 to 70°C
400G QSFP-DD FR4QSFP-DD MSA2kmLC DuplexSMF0 to 70°C
400G QSFP-DD 2FR4QSFP-DD MSA, IEEE 802.3bs2kmCSSMF0 to 70°C
400G QSFP-DD LR4QSFP-DD MSA Compliant10kmLC DuplexSMF0 to 70°C
400G QSFP-DD LR8QSFP-DD MSA Compliant10kmLC DuplexSMF0 to 70°C
400G QSFP-DD ER8QSFP-DD MSA Compliant40kmLC DuplexSMF0 to 70°C
400G OSFP SR8IEEE P802.3cm; IEEE 802.3cd100mMTP/MPO-16MMF0 to 70°C
400G OSFP DR4IEEE 802.3bs500mMTP/MPO-12SMF0 to 70°C
4000G OSFP XDR4/DR4+/2kmMTP/MPO-12SMF0 to 70°C
400G OSFP FR4100G lambda MSA2kmLC DuplexSMF0 to 70°C
400G OSFP 2FR4IEEE 802.3bs2kmCSSMF0 to 70°C
400G OSFP LR4100G lambda MSA10kmLC DuplexSMF0 to 70°C



QSFP-DD CablesCatagoryProduct DescriptionReachTemperature RangePower Consumption
400G QSFP-DD DACQSFP-DD to QSFP-DD DACwith each 400G QSFP-DD using 8x 50G PAM4 electrical lanesno more than 3m0 to 70°C<1.5W
400G QSFP-DD Breakout DACQSFP-DD to 2x 200G QSFP56 DACwith each 200G QSFP56 using 4x 50G PAM4 electrical lanesno more than 3m0 to 70°C<0.1W
QSFP-DD to 4x 100G QSFPs DACwith each 100G QSFPs using 2x 50G PAM4 electrical lanesno more than 3m0 to 70°C<0.1W
QSFP-DD to 8x 50G SFP56 DACwith each 50G SFP56 using 1x 50G PAM4 electrical laneno more than 3m0 to 80°C<0.1W
400G QSFP-DD AOCQSFP-DD to QSFP-DD AOCwith each 400G QSFP-DD using 8x 50G PAM4 electrical lanes70m (OM3) or 100m (OM4)0 to 70°C<10W
400G QSFP-DD Breakout AOCQSFP-DD to 2x 200G QSFP56 AOCwith each 200G QSFP56 using 4X 50G PAM4 electrical lane70m (OM3) or 100m (OM4)0 to 70°C/
QSFP-DD to 8x 50G SFP56 AOCwith each 50G SFP56 using 1x 50G PAM4 electrical lane70m (OM3) or 100m (OM4)0 to 70°C/
400G OSFP DACOSFP to OSFP DACwith each 400G OSFP using 8x 50G PAM4 electrical lanesno more than 3m0 to 70°C<0.5W
400G OSFP Breakout DACOSFP to 2x 200G QSFP56 DACwith each 200G QSFP56 using 4x 50G PAM4 electrical lanesno more than 3m0 to 70°C/
OSFP to 4x100G QSFPs DACwith each 100G QSFPs using 2x 50G PAM4 electrical lanesno more than 3m0 to 70°C/
OSFP to 8x 50G SFP56 DACwith each 50G SFP56 using 1x 50G PAM4 electrical laneno more than 3m//
400G OSFP AOCOSFP to OSFP AOCwith each 400G OSFP using 8x 50G PAM4 electrical lanes70m (OM3) or 100m (OM4)0 to 70°C<9.5W



Q5: What do the suffixes “SR8, DR4 / XDR4, FR4 / LR4 and 2FR4” mean in 400G transceivers?

A5: The letters refer to reach, and the number refers to the number of optical channels:

  • SR8: SR refers to 100m over MMF. Each of the 8 optical channels from an SR8 module is carried on separate fibers, resulting in a total of 16 fibers (8 Tx and 8 Rx).
  • DR4 / XDR4: DR / XDR refer to 500m / 2km over SMF. Each of the 4 optical channels is carried on separate fibers, resulting in a total of 4 pairs of fibers.
  • FR4 / LR4: FR4 / LR4 refer to 2km / 10km over SMF. All 4 optical channels from an FR4 / LR4 are multiplexed onto one fiber pair, resulting in a total of 2 fibers (1 Tx and 1 Rx).
  • 2FR4: 2FR4 refers to 2 x 200G-FR4 links with 2km over SMF. Each of the 200G FR4 links has 4 optical channels, multiplexed onto one fiber pair (1 Tx and 1 Rx per 200G link). A 2FR4 has 2 of these links, resulting in a total of 4 fibers, and a total of 8 optical channels.

FAQs on 400G Transceivers and Cables Applications

Q1: What are the benefits of moving to 400G technology?

A1: 400G technology can increase the throughput of data and maximize the bandwidth and port density of the data centers. With only 1/4 the number of optical fiber links, connectors, and patch panels when using 100G platforms for the same aggregate bandwidth, 400G optics can also reduce operating expenses. With these benefits, 400G transceivers and QSFP-DD cables can provide ideal solutions for data centers and high-performance computing environments.

Q2: What are the applications of QSFP-DD cables?

A2: QSFP-DD cables are mainly used for short-distance 400G Ethernet connectivity in the data centers, and 400G to 2x 200G / 4x 100G / 8x 50G Ethernet applications.

Q3: 400G QSFP-DD vs 400G OSFP/CFP8: What are the differences?

A3: The table below includes detailed comparisons for the three main form factors of 400G transceivers.

400G Transceiver400G QSFP-DD400G OSFPCFP8
Application ScenarioData centerData center & telecomTelecom
Size18.35mm× 89.4mm× 8.5mm22.58mm× 107.8mm× 13mm40mm× 102mm× 9.5mm
Max Power Consumption12W15W24W
Backward Compatibility with QSFP28YesThrough adapterNo
Electrical signaling (Gbps)8× 50G
Switch Port Density (1RU)363616
Media TypeMMF & SMF
Hot PluggableYes
Thermal ManagementIndirectDirectIndirect
Support 800GNoYesNo



For more details about the differences, please refer to the blog: Differences Between QSFP-DD and QSFP+/QSFP28/QSFP56/OSFP/CFP8/COBO

Q4: What does it mean when an electrical or optical channel is PAM4 or NRZ in 400G transceivers?

A4: NRZ is a modulation technique that has two voltage levels to represent logic 0 and logic 1. PAM4 uses four voltage levels to represent four combinations of two bits logic-11, 10, 01, and 00. PAM4 signal can transmit twice faster than the traditional NRZ signal.

When a signal is referred to as “25G NRZ”, it means the signal is carrying data at 25 Gbps with NRZ modulation. When a signal is referred to as “50G PAM4”, or “100G PAM4”, it means the signal is carrying data at 50 Gbps, or 100 Gbps, respectively, using PAM4 modulation. The electrical connector interface of 400G transceivers is always 8x 50Gb/s PAM4 (for a total of 400Gb/s).

FAQs on Using 400G Transceivers and Cables in Data Centers

Q1: Can I plug an OSFP module into a 400G QSFP-DD port, or a QSFP-DD module into an OSFP port?

A1: No. OSFP and QSFP-DD are two physically distinct form factors. If you have an OSFP system, then 400G OSFP optics must be used. If you have a QSFP-DD system, then 400G QSFP-DD optics must be used.

Q2: Can a QSFP module be plugged into a 400G QSFP-DD port?

A2: Yes. A QSFP (40G or 100G) module can be inserted into a QSFP-DD port as QSFP-DD is backward compatible with QSFP modules. When using a QSFP module in a 400G QSFP-DD port, the QSFP-DD port must be configured for a data rate of 100G (or 40G).

Q3: Is it possible with a 400G OSFP on one end of a 400G link, and a 400G QSFP-DD on the other end?

A3: Yes. OSFP and QSFP-DD describe the physical form factors of the modules. As long as the Ethernet media types are the same (i.e. both ends of the link are 400G-DR4, or 400G-FR4 etc.), 400G OSFP and 400G QSFP-DD modules will interoperate with each other.

Q4: How can I break out a 400G port and connect to 100G QSFP ports on existing platforms?

A4: There are several ways to break out a 400G port to 100G QSFP ports:

  • QSFP-DD-DR4 to 4x 100G-QSFP-DR over 500m SMF
400G to 4x 100G
  • QSFP-DD-XDR4 to 4x 100G-QSFP-FR over 2km SMF
400G to 4x 100G
  • QSFP-DD-LR4 to 4x 100G-QSFP-LR over 10km SMF
400G to 4x 100G
  • OSFP-400G-2FR4 to 2x QSFP-100G-CWDM4 over 2km SMF
400G to 4x 100G

Apart from the 400G transceivers mentioned above, 400G to 4x 100G breakout cables can also be used.

Article Source: FAQs on 400G Transceivers and Cables

Related Articles:

400G Transceiver, DAC, or AOC: How to Choose?

400G OSFP Transceiver Types Overview

100G NIC: An Irresistible Trend in Next-Generation 400G Data Center

NIC, short for network interface card, which can be called network interface controller, network adapter or LAN adapter, allows a networking device to communicate with other networking devices. Without NIC, networking can hardly be done. There are NICs with different types and speeds, such as wireless and wired NIC, from 10G to 100G. Among them, 100G NIC, as a product appearing in recent years, hasn’t taken a large market share yet. This post gives a description of 100G NIC and the trends in NIC as follows.

What Is 100G NIC?

NIC is installed on a computer and used for communicating over a network with another computer, server or other network devices. It comes in many different forms but there are two main different types of NIC: wired NIC and wireless NIC. Wireless NICs use wireless technologies to access the network, while wired NICs use DAC cable or transceiver and fiber patch cable. The most popular wired LAN technology is Ethernet. In terms of its application field, it can be divided into computer NIC card and server NIC card. For client computers, one NIC is needed in most cases. However, for servers, it makes sense to use more than one NIC to meet the demand for handling more network traffic. Generally, one NIC has one network interface, but there are still some server NICs that have two or more interfaces built in a single card.

100G NIC

Figure 1: FS 100G NIC

With the expanding of data center from 10G to 100G, 25G server NIC has gained a firm foothold in the NIC market. In the meantime, the growth in demand for bandwidth is driving data center to higher bandwidth, 200G/400G and 100G transceivers have been widespread, which paves the way for 100G server.

How to Select 100G NIC?

How to choose the best 100G NIC from all the vendors? If you are stuck in this puzzle, see the following section listing recommendations and considerations to consider.

Connector

Connector types like RJ45, LC, FC, SC are commonly used connectors on NIC. You should check the connector type supported by NIC. Today many networks are only using RJ45, so it may be not that hard to choose the NIC for the right connector type as it has been in the past. Even so, some network may utilize a different interface such as coax. Therefore, check if the card you are planning to buy supports this connection before purchasing.

Bus Type

PCI is a hardware bus used for adding internal components to the computer. There are three main PCI bus types used by servers and workstations now: PCI, PCI-X and PCI-E. Among them, PCI is the most conventional one. It has a fixed width of 32 bits and can handle only 5 devices at a time. PCI-X is a higher upgraded version, providing more bandwidth. With the emergence of PCI-E, PCI-X cards are gradually replaced. PCI-E is a serial connection so that devices no longer share bandwidth like they do on a normal bus. Besides, there are different physical sizes of PCI-E card in the market: x16, x8, x4, and x1. Before purchasing a 100G NIC, it is necessary to make sure which PCI version and slot width can be compatible with your current equipment and network environment.

Hot swappable

There are some NICs that can be installed and removed without shutting down the system, which helps minimize downtime by allowing faulty devices to be replaced immediately. While you are choosing your 100G NIC, be sure to check if it supports hot swapping.

Trends in NIC

NICs were commonly used in desktop computers in the 1990s and early 2000s. Up to now, it has been widely used in servers and workstations with different types and rates. With the popularization of wireless networking and WiFi, wireless NICs gradually grows in popularity. However, wired cards are still popular for relatively immobile network devices owing to the reliable connections.NICs have been upgrading for years. As data centers are expanding at an unprecedented pace and driving the need for higher bandwidth between the server and switches, networking is moving from 10G to 25G and even 100G. Companies like Intel and Mellanox have launched their 100G NIC in succession.

During the upgrading from 10G to 100G in data centers, 25G server connectivity popularized for 100G migration can be realized by 4 strands of 25G. 25G NIC is still the mainstream. However, considering the fact that the overall bandwidth for data centers grows quickly and hardware upgrade cycles for data centers occur every two years, the ethernet speed can be faster than we expect. 400G data center is just on the horizon. It stands a good chance that 100G NIC will play an integral role in next-generation 400G networking.

Meanwhile, the need of 100G NIC will drive the demand for other network devices as well. For instance, 100G transceiver, the device between NIC and network, is bound to pervade. Now 100G transceivers are provided by many brands with different types such as CXP, CFP, QSFP28 transceivers,etc. FS supplies a full series of compatible 100G QSFP28 and CFP transceivers that can be matched with the major brand of 100G Ethernet NIC, such as Mellanox and Intel.

Conclusion

Nowadays with the hyping of the next generation cellular technology, 5G, the higher bandwidth is needed for data flow, which paves the way for 100G NIC. On the occasion, 100G transceivers and 400G network switches will be in great need. We believe that the new era of 5G networks will see the popularization of 100G NIC and change towards a new era of network performance.

Article Source: 100G NIC: An Irresistible Trend in Next-Generation 400G Data Center

Related Articles:

400G QSFP Transceiver Types and Fiber Connections

How Many 400G Transceiver Types Are in the Market?

Why Choose FS Optics for 400G Deployment?

The increase in global data traffic has fostered the development of optical devices, which has led to data centers facing increasing challenges in cloud access, processing power, storage, and transmission bandwidth. Because of this, the 400G transceiver market is growing rapidly, and the choices of general optical modules are gradually diversifying. Customers also have many concerns when choosing optical products, so how do FS 400G transceivers solve these concerns to meet the needs, please read this article.

Concerns for Choosing 400G Transceivers

The choice of general 400G optical modules will face many problems. Customers usually struggle with how to choose good quality 400G optical modules and have some concerns, such as the choice of suppliers, the performance and compatibility of the optical module, etc.

General Transceivers or OEM Optics?

It is well known that general optical modules have cost advantages over their OEM counterparts and are provided on demand. In the rapidly growing 400G transceiver market, diversified suppliers have increased the difficulty of selecting general optical modules, and there also be some problems: incompatibility with existing equipment, prone to network delays leading to system restarts, or other unqualified after-sales services. Therefore, it is important to choose a supplier you trust.

400G Transceiver Quality Issues

The most common quality issues with 400G transceivers from general optical product suppliers are compatibility and reliability. Because ensuring compatibility means achieving high precision when coding optics to interoperate with OEM hardware, this problem is common among inexperienced suppliers. Failures caused by these quality issues can range from a lack of relevant functionality in equipment operation to catastrophic failures such as network, system reboots, or network outages. Whether the long-term performance of the optical module can remain as efficient as the first deployment is also a factor that customers need to consider. Otherwise, it will cause trouble later.

Consequences of Incorrect 400G Transceivers

OEM warranty is a recurring issue. There is a saying that using general products in their OEM hardware voids the warranty. But the optical module itself is unlikely to damage OEM equipment because 400G ethernet QSFP modules convert electrical data from devices into optical signals, which can prove that there is no input power from the optical port to damage the device.

At this point, the optical module will not function properly or appear to be incompatible with your equipment environment, and the IT manager needs to re-plan to take the necessary alternative strategies to resolve the failure. In this case, it takes a certain amount of time to communicate with optical product suppliers and arrange for engineers to conduct fault diagnosis. If a problem is diagnosed, the faulty product should be returned and a new product delivered for redeployment and equipment testing. Essentially, the resolution to these problems costs a lot of time and effort for IT managers, adding to the cost of wasted time.

Benefits of FS 400G Optical Modules

Compared with the existing optical module supplier market, FS optical modules have certain OEM equipment compatibility and reliability, can meet various transmission needs, and have high-quality after-sales service. At the same time, FS also has a one-stop procurement platform to support the procurement of a set of 400G optical products, which greatly improves your purchase efficiency and saves costs.

Transceiver Reliability

How FS ensures the reliability of its 400G optics? It is first reflected in their production process. FS 400G optical modules adopt the original equipment manufacturer (OEM) compatibility programming core capability, featuring interoperability with multiple suppliers. These transceivers provide high-quality optical connections at a lower cost and the same performance quality as the OEM brand. Also, the transceiver’s standardized features to OEM specifications ensure high component quality and suitability.

The second is the rigorous testing of the transceivers. FS optical modules are tested for compatibility on equipment by a professional technical team, as a way to eliminate errors and reduce the need for workarounds and system downtime. Even the equipment in use in your computer room can be tested to meet your expectations. This reduces the risk of network failures and ensures that the business remains up and running, providing uninterrupted service to customers. FS adheres to a 99.98% reliability rating, allowing you to enjoy quality products and services.

Multiple Choice and Trusted Services

FS can provide a variety of transceivers, and some may not be available from the OEM. FS has set up a global warehouse base with a large inventory of optical modules to connectivity needs of your network projects.

FS laboratory has an experienced team of professional technical experts and features perfect after-sales service. If you have any questions about the use of the product, you can directly contact the one-to-one sales representative to solve it. For example, if you want to know whether Juniper QSFP/OSFP works on Cisco platforms, FS will tell you based on specific lab tests and experience. Moreover, when you need to perform remote compatibility testing, the FS remote demo service can provide you with a better testing experience.

400G transceivers

Cost-effectiveness

When you choose optical products for your 400G project, 400G optical transceivers may not be the only thing you require, network devices, optical cables and corresponding accessories, such as switches, wiring, or other accessories are also needed. Of course, when applying these components, you also need to consider their loss and fit. To better solve this problem, the FS 400G product series supports one-stop procurement to help you solve your deployment problems and make the products perfectly fit your needs, which can improve your procurement efficiency and save manpower and material costs. In addition, with its professional capabilities, FS can complete the testing, collection, distribution, acceptance, after-sales, and other work of the products you need, which is convenient for your equipment maintenance and management.

A one-stop procurement approach can reduce a company’s overall cost of investment (COI). For example, replacing 9 individual SKUs with one SKU at a simple price can simplify the procurement, inventory, and operational issues of optical modules. This reduces the time spent on multiple 400G optical module suppliers, and a high-quality supplier like FS can spend valuable time in other more important places, you can save up to 70% of the cost.

FS 400G product family

Explore FS 400G Optics Solutions

Facing the diverse general optic product supplier market, you should choose a supplier you trust, which will have a huge influence on your business. FS can be one of your best options as a general optical product supplier. With a professional technical team, global warehousing capabilities, remote demo services, and 400G transceivers with the same OEM performance, FS can ensure your high-performance network, optimize your operational efficiency, and minimize waste of time, effort, and budget.

Article Source:

https://community.fs.com/news/why-choose-fs-optics-for-400g-deployment.html

Related Articles:

https://community.fs.com/blog/faqs-about-fs-400g-transceivers.html
https://community.fs.com/blog/infographic-types-of-400g-transceivers.html