Brief Introduction Of Protocol Converter

protocol converter, referred to as protocol translator, used to convert standard or proprietary protocol of one device to the protocol suitable for the other device or tools to achieve the interoperability, with each protocol based on many factors. It is much like a language translator, translates messages, or data streams, between networks to enable both networks to easily interpret the data. Typical types include E1 to Ethernet, V35 to Ethernet and E1 to V35. Variety protocols used in different fields like Power Generation, Transmission & Distribution, Oil & Gas, Automaton, Utilities, AMR, and Remote Monitoring applications.

Structure Of Protocol Converter
The general architecture of a protocol converter includes an internal master protocol communicating to the external slave devices and the data collected is used to update the internal database of the converter. When the external master requests for data, the internal slave collects data from the database and send it to the external master.

The end result of a protocol converter is to allow the protocol of one machine interact with the protocol of another, increasing the amount of machines the network can use. While the penalties normally are slight, conversion from one protocol to another may slow the connection speed, especially if the converted protocol innately has a lower data rate. Most converters have a database with several protocols, and this database is used to convert the initial protocol to another format.

Different Protocols Of Protocol Converter
The majority of networks have many machines using different protocols, and these protocols dictate how a machine acts. These protocols are determined by several factors, including data rate, encryption methods, file and message formats and associated service, because some services exclusively use one protocol. A protocol converter is tasked with taking this protocol and changing it to another one.

Most protocol converter units are programmed to understand a handful of different protocols, and these units use an internal database to track all the protocols. This database will store all the factors associated with the known protocols, and the database also is tasked with helping this device understand what needs to be changed to alter one protocol to another. Unlike regular databases, which can be manually updated, this database typically is locked from users.

Features Of Protocol Converter
Protocol converters provide physical conversion between ITU-T G.703 standard E1 interface and standard V.35, RS232, RS422 converterRS485 converter and 10M/100M Ethernet interface, offering security and seamless link for communication between different devices with different interfaces. Protocol supports IEEE 802.3, IEEE 802.1 P, 802.1Q (VLAN). The interface converter transfers data with V.35, RS232, RS485, RS422 output. E1 interface is compatible with ITU-T G.703, G.704 and G.823 supporting BNC 75Ω/unbalance impedance and RJ45 120Ω/balance impedance with speed rates range of 64K~2.048Mbps. Single and multi E1 and framed E1 (FE1) channels; data interface and Ethernet interface; mini rack and 19 inch rack; 220V, 110V, 48V power supply or both are optional, as well as TDM over IP devices.

Protocol converter series may put into action the actual transformation in between single E1 protocol port as well as protocol ports of V.35, V.24, RS232 Ethernet converter or Ethernet within the tranny system; it may be thoroughly utilized in numerous being able to access problems with regard to providers as well as commercial clients, for example DDN, ATM, as well as for that transformation in between router and E1 port, or even the actual occasion exactly where Ethernet tend to be interconnected from divided internet websites through SDH or even additional tranny gear.

A protocol converter usually is helpful. Protocols are software installed on the routers, they are widely used in a variety of industries for applications such as building and process automation. Protocol converters also are used for substation automation, or a system for managing and controlling equipment in an electric power system.

The Main Parameters of Cisco SFP Transceiver Modules

Cisco System, Inc. established in 1984, is an international reputable company providing internet solutions, equipment and software products, whose products are mainly used to connect a computer network system, Cisco routers, switches and other equipment carries 80% of global Internet communications, of the new economy in the Silicon Valley legend. Over the past 20 years, Cisco has almost become synonymous with the Internet, network applications, productivity, Cisco have become the market leader in every area of its entry. The company is also specialized in producing transceiver modules include a well advanced and useful type of transceiver namely mini GBIC or SFP module.

SFP is the abbreviation of Small Form Factor Pluggable referring to a compact small and hot-pluggable transceiver. Cisco SFP transceivers are designed to change the series electric signals to the serial optical signals for either telecommunication or data communication fields. The transceiver is usually working with a network device a switch or a router to connect to a copper networking cable or fiber optic. SFP is a recognized industry standard thus is supported by almost every leading vendors such as H3C, HP, Huawei. It is designed to support communication in standards such as Gigabit Ethernet, SONET, Fibre Channel and many others.

The main parameters of the SFP module

Average transmit optical power (TxLOP: Optical Average Power) average transmit optical power refers to the signal logic 1 when the optical power and for 0:00 the arithmetic mean of the optical power. P0 + the P1 PAVG = 2 (dBm)

Consumers light ratio (ER: ExtinctiRatio) signal logic to 1, the optical power and is 0 when the light power size ratio. The calculation formula for: P1ER = 10log P0 (dB) ER extinction ratio, the unit is dB, P1 and P0 represents the logic 1 and 0 when the optical power.

The minimum average light reception sensitivity (Receiver Sensitivity) measure the receiving end of a certain bit error rate (1 × 10exp (-12)) To ensure the desired reception power, in units of dBm. BER is within a longer period of time, after received after the receiving side of the photoelectric conversion error output terminal of the number of symbols with the BER tester gives the ratio of the number of symbols.

Loss indicative signal (LOS Assert) restore instruction (LOS Dessert) receiver output an electric signal, and the signal is lost and the potential level of the adequacy reflects the intensity of the optical signal received by the receiver, to determine by comparing the potential of the preset potentiometer light whether the signal is lost. Potential has a certain effect hysteresis comparator to achieve, usually default electrical signal corresponding to the optical power as an indication, in dBm

Eye mask margin (EMM: Eye Mask Margin) eye opening, refers to the degree of “open” in the best sampling point eye amplitude distortion-free opening of the eye diagram should be 100 [%]. Eye diagram template tolerance eye mask expansion, until the eye diagram of the sampling points into the template of the biggest expansion of the expansion area percentage.

Cisco SFP is flexible in its extensive set of items including Cisco GLC-T, Cisco GLC-SX-MM, Cisco GLC-LH-SM, Cisco CWDM SFP, which can be used with the union of 1000BASE-T, 1000BASE-SX, 1000BASE- LX/LH, 1000BASE-EX, 1000BASE-ZX, or 1000BASE-BX10-D/U in a port-by-port basis.

Fiber Optic Tools To Terminate Fiber Optic Cables

There are various kinds of fiber optic tools utilized in the fiber optic installation and maintenance works. And the cable stripper is a tool to remove the outside jacket from an optical fiber cable, plays an important role in the fiber optic cable splicing process.

A high quality fiber stripper will safely and efficiently remove the outside jacket from an optical fiber cable. Just with a highly fiber stripper of your fiber cable jacket tends to make an undamaged exposed fiber that is important for successful splicing of two optical fibers. An optical fiber stripper can help you speed up the process of performing fiber network maintenance work and avoid excessive network downtime. But do you know how to cut fiber optic cables?

Terminating fiber optic cables might seem complicated if you do it the first time. Follow these instructions below to understand the proper method of cutting and do the job yourself. Read on to learn the basics of cutting fiber optic cables. Your safety is of utmost importance. Wear gloves while working with fiber optic cables.

With the right set of tools, fiber optic cable cutting can be a very simple undertaking. Striping fiber optic cable isn’t a job for a wire stripper. You need special strippers that allow you to precisely remove the correct cable layers for the job. The tools needed for fiber terminations are fiber optic cable strippers, kevlar scissors, fiber cleavers, ST, SC, LC or MTRJ fiber optic connectors, fiber connector hand polishing puck, fiber polishing films and fiber inspection microscope.

1. Strip the fiber with a fiber optic stripper

Tri-Hole Fiber Optic Stripper
Fiber cables come with 3mm jacket, Kevlar strength member and 0.9mm buffer coating. To get off the 0.125mm fiber cladding, you need to remove the 3mm jacket with a fiber stripper, then cut the Kevlar fibers with a Kevlar cutter, finally strip the 0.9mm buffer down to 0.125mm cladding with a fiber optic stripper.

2. Cleave the fiber with a fiber cleaver

Fujikura CT-30A High Precision Fiber Cleaver
After stripping the fiber down to 0.125mm cladding, you insert the fiber into a SC, ST or LC connector, and then inject some fiber optic epoxy into the connector with a syringe. You will then lay the connector into a hot oven to cure the fiber epoxy so it can hold the fiber tightly. After the curing process, you cleave extra fibers from the connector tip with a Fujikura cleaver.

3. Hand polishing the fiber
In the next step, you put the connector (already with fiber fixed inside) into a hand polishing puck, which serves as a fixture while you polish the end face of the connector to get a high quality mirror like finish. You then hold the polishing puck and polish the connector on a connector lapping film in a figure 8 shape for 10~15 times. Repeat the hand polishing steps stepping from 12um, 3um and 0.5um lapping films.

4. Fiber termination quality inspection
The final step is to inspect the quality of your work. You insert the finished connector into a fiber optic inspection microscope which zooms to 200 to 400 time level to show you all the scratches and pits that may exist on the connector end face. If everything looks perfect, then you can connector your fiber into the network.

SFP Plus Transceiver With Newest Industrial Standard

SFP plus Transceiver (Small Form-Factor Pluggable) is the upgraded version of the former SFP transceiver (mini GBIC), with higher data rate and new industrial standards. It is smaller than any of the currently shipping form factors and provides the highest density per line card. SFP plus offers customers both immediate benefits and long-term advantages in supporting evolving data center needs. The SFP plus specification was first published on May 9, 2006, and version 4.1 published on July 6, 2009. It is a international industry format supported by many network component vendors.

SFP plus is an innovative, next-generation transceiver module. Initially, it is targeted to support speeds of 10 Gbps for next-generation Gigabit Ethernet applications and 8.5Gbps Fiber Channel systems. What is more, SFP plus is with lower power consumption for less than 1W and it is even cost effective. These transceivers are with managed digital optical monitoring and superior high temperature performance.

Several industrial acknowledged standards for SFP plus has been released for 10Gpbs networks, including 10Gbase-SR, which define the SFP plus transceiver working with OM3 10G multimode fiber at 30 to 300 meters range, 10Gbase-LR which define the SFP plus transceiver working with single mode fiber at 10km range, 10Gbase-LRM which define the FDDI multimode fiber at around 220 meters range.

Compare With XENPAK or XFP Modules
In comparison to earlier XENPAK or XFP modules, SFP plus transceiver is with more compact size compared with the former 10G transceivers X2 and Xenpak, leave more circuitry to be implemented on the host board instead of inside the module.
The advantages of  SFP plus transceiver:
SFP+ Has A More Compact Form Factor Package Than X2 And XFP.
It Can Connect With The Same Data Rate Of XFP, X2 And XENPAK Directly.
The Cost Of SFP+ Is Lower Than XFP, X2 And XENPAK.

SFP plus transceiver is interchangeable with SFP transceiver and can be used in the same cages as SFP transceiver. For 10G applications,  SFP plus transceiver has a smaller footprint and lower power consumption than XFP transceiver. The electrical interface to the host board for SFP transceiver and  SFP plus transceiver is the same serial.

Many companies, such as Cisco, Finisar, and Sumitomo, have released  SFP plus transceivers. SFP plus ensure the 10Gbps data transmission and the most densely installation capability as well as the lowest cost, currently it is well acknowledged as the ultimate choice for the 10Gbps fiber optic transceivers. Among them, Cisco SFP+ transceiver is the mainstream market. Cisco 10Gbase SFP+ transceivers are used for high speed 10Gigabit Ethernet, linking the equipment to fiber optic networks. Cisco SFP+ products include active SFP+ cables and SFP+ transceivers. There is also copper transceiver available from Cisco.

Kinds Of CWDM Moudules

Coarse Wavelength Divison Multiplexer/Demultiplexer Module (CWDM Mux/Demux) is really a flexible, low-cost solution that effective at combining nine optical signals in to a fiber pair. The CWDM Mux/Demux is designed to interoperate with the WaveReady distinct transponder and optical regenerator solutions as well as CWDM transponders and small form-factor pluggables (SFPs) utilized in acquireable transmission equipment.

Common utilizations of CWDM technology include the multiplexers and de-multiplexers or optical amplifiers to improve the ability in the fiber optic cable. The CWDM Mux/Demux modules including CWDM MUX and CWDM Demux, are designed to multiplex multiple CWDM channels into 1 or 2 fibers. As well as highly reliable passive optics certified for environmentally hardened applications, the CWDM Mux/Demux lets operators use available fiber bandwidth in local loop and enterprise architectures.

In accordance with the wavelength or running channels in the each signal, CWDM MUX/DEMUX includes 4CH, 5CH, 8CH, 9CH, 16CH, 18CH CWDM Mux/Demux. These CWDM MUX/DEMUX can be found in 19″ Rack Mount or LGX module package.

4 channel CWDM MUX/DEMUX Module general features:
Low Insertion Loss;
Low PDL;
Compact Design;
Good channel-to-channel uniformity;
Wide Operating Wavelength;
Wide Operating Temperature;
From -40??C to 85??C;
High Reliability and Stability.

4 channel CWDM MUX/DeMUX Module Applications:
CWDM System;
PON Networks;
CATV Links.

CWDM supplies the most economic and efficient wavelength division multiplexing solutions for metro edge and access networks. Ingellen CWDM modules cover 2 channel, 4 channel, 5 channel, 8 channel, 9 channel, 16 channel and 18 channel CWDM Mux/Demux. Ingellen Technology offers CWDM OADMs (Optical Add/Drop Module) from 1 to 16 channels for CWDM networks, including 1 channel, 2 channel, 4 channel, 8 channel and 16 channel CWDM OADM.

The CWDM OADMs are passive devices that can multiplex/demultiplex or add/drop wavelengths from multiple fibers onto one optical fiber. Through the use of CWDM technology, individual channels might be optically added or dropped from a fiber pair while allowing pass-through visitors to continue unobstructed through the bus or ring. It offers low insertion loss, high channel isolation, wide pass band, low temperature sensitivity and epoxy free optical path.

1 channel CWDM OADM Key Features:
Add/drop ITU-T G.695- and G.694.2-compatible CWDM channels onto a fiber pair;
Designed for use in outside-plant fiber splice enclosures;
Upgradeable to 8 channels per fiber;
Provides low-loss pass-through for CWDM channels;
Thermally stable passive optics require no electrical energy.

1 channel CWDM OADM Applications:
Provides fiber conservation or reclamation for CWDM wireless backhaul, broadband, and other services;
Supports linear (bus) and ring add/drop architectures.