Overview Fiber Optics Communication

The use and demand of optical fiber has grown tremendously and fiber optical applications are numerous. Telecommunication applications are widespread, ranging from global networks to desktop computers. These involve the transmission of voice, data, or video over distances of less than a meter to hundreds of kilometers, using one of a few standard fiber designs in one of several cable designs.

Optical fibers are transparent, flexible glass fibers which allow good quality high bandwidth signal transmission than any other communication cables. Likewise, fiber optics can be understood as technological innovation in the field of applied sciences dealing with light transmission. Any typical optical fiber cable contains more than one fiber optics. Fiber optic cable is usually plastic coated individually and has extra protection to suit the environment in which it is used.

Unlike the more temperamental conventional Ethernet cables which can frequently lose their signal if exposed to certain types of equipment, fiber optic cables are highly resistant to interference from electronic devices, wireless networks, or mobile phones. This is the main reason that it is a wise decision to convert Ethernet cables(like Cat 7 cables) to fiber optic cables, as it provides a faster signal than what Ethernet is capable of sending or receiving.

Networking solutions advance at an unbelievably fast rate with new and faster types of cables being released frequently. If you have a network that uses the traditional type of Ethernet cables and another network that uses the faster and more reliable fiber optic cables, it is possible and advisable to connect them together using a special kind of fiber optic Ethernet converter(like single mode to multimode converter). A fiber optic Ethernet converter connects an Ethernet cable at one end into a fiber optic cable at the other end to allow multiple networks that are using different kinds of cables to communicate with each other. It can also be used within the same network if multiple computers are using different technologies or not all of them have the capability to use fiber optic cables.

Fiber optic cables are used extensively for transmission of data, used for lighting and imaging and as sensors to measure and monitor a vast array of variables. Multinational firms need secure, reliable systems to transfer data and financial information between buildings to the desktop terminals or computers and to transfer data around the world. The high bandwidth provided by fiber makes it the perfect choice for transmitting broadband signals, such as high-definition television (HDTV) telecasts.

FiberStore is a well-known fiber optic cable manufacturer. Established in 2001, the company has a wide variety of bulk fiber optic cables. Their offerings range from house wiring cables, LAN/Structural cables, Aerial cables, to Ribbon Cables and several other cables. Want to know fiber optic cable cost details, just visit their home page.

The Developing Of Ethernet Technologies

The most mature and common of the network applications is Ethernet. Over the past 25 years, despite stiff competition from more modern network architectures, Ethernet has flourished. In the past 10 years alone, Ethernet has been updated to support speeds of 100Mbps, 1Gbps (about 1000Mbps) and 10Gbps; currently 40 and 100 Gigabit Ethernet are being standardized in the IEEE 802.3b committee. Forty and 100 Gigabit Ethernet will be deployed over optical fiber for 100 meters or greater, and research is progressing to make it available over UTP for distances up to 10 meters.
Ethernet has evolved to the point that it can be used on a number of different cabling systems.

10Mbps Ethernet Systems
>>10Base-5: “Standard Ethernet Cable”
The earliest version of Ethernet ran on a rigid coaxial cable that was called Standard Ethernet cable, but was more commonly referred to as thicknet. While thicknet was difficult to work with (because it was not very flexible and was hard to install and connect nodes to), it was reliable and had a usable cable length of 500 meters. 10Base-5 systems can still be found in older installations, typically used as backbone cable, but virtually no reason exists for you to install a new 10Base-5 system today.>>10Base-T Ethernet
10Base-T : 10Mbps Ethernet over unshielded twisted-pair cable. Maximum cable length (network device to network card) is 100 meters.10Base-T (the T stands for twisted pair) Ethernet is less common today and has been overtaken by 100Base-T. Even though 10Base-T uses only two pairs of a four-pair cable, all eight pins should be connected properly in anticipation of future upgrades or other network architectures.
>>10Base-F Ethernet
Specifications for using Ethernet over Optical Fiber Cables existed back in the early 1980s. Originally, fiber-optic cable was simply used to connect repeaters whose separation exceeded the distance limitations of thicknet cable. The original specification was called Fiber-Optic Inter-Repeater
Link (FOIRL), which described linking two repeaters together with fiber-optic cable up to 1,000 meters (3,280´) in length. The cost of fiber-optic repeaters and fiber-optic cabling dropped greatly during the 1980s,and connecting individual computers directly to the hub via fiber-optic cable became more common.Originally, the FOIRL specification was not designed with individual computers in mind,so the IEEE developed a series of fiber-optic media specifications. These specifications are collectively known as 10Base-F. It is uncommon to use optical fiber at these slow speeds today. For historical purposes, the individual specifications for (and methods for implementing) 10Base-F Ethernet include the following:

>>10Base-2 Ethernet

10Base-2 is still an excellent way to connect a small number of computers together in a small physical area such as a home office, classroom, or
lab. The 10Base-2 Ethernet uses thin coaxial (RG-58/U or RG-58 A/U) to connect computers together. This thin coaxial cable is also called thinnet.

100Mbps Ethernet Systems

The 100Mbps version of 802.3 Ethernet specifies a number of different methods of cabling a Fast Ethernet system, including 100Base-TX, 100Base-T4, and 100Base-FX.

>>100Base-TX Ethernet

The 100Base-TX specification uses physical-media specifications developed by ANSI that were originally defined for FDDI (ANSI specification X3T9.5) and adapted for twisted-pair cabling. The 100Base-TX requires Category 5e or better cabling but uses only two of the four pairs. The eight-position modular jack (RJ-45) uses the same pin numbers as 10Base-T Ethernet.

>>The 100Base-T4 specification was developed as part of the 100Base-T specification so that existing Category 3–compliant systems could also support Fast Ethernet. The designers accomplish 100Mbps throughput on Category 3 cabling by using all four pairs of wire; 100Base-T4 requires

a minimu.m of Category 3 cable. The requirement can ease the migration path to 100Mbps technology.

>>100Base-FX Ethernet

Like its 100Base-TX copper cousin, 100Base-FX uses a physical-media specification developed by ANSI for FDDI. The 100Base-FX specification was developed to allow 100Mbps Ethernet to be used over fiber-optic cable. Although the cabling plant is wired in a star topology, 100Base-FX is
a bus architecture.

Gigabit Ethernet (1000Mbps)

1000Mbps Ethernet was supported only on fiber-optic cable. The IEEE 802.3z specification included support for three physical-media options (PHYs), each designed to support different distances and types of communications:

Targeted to intra-building backbones and horizontal cabling applications such as to workstations and other network nodes, 1000Base-SX is designed to work with multimode fiber-optic cable at the 850nm wavelength.

Designed to support backbone-type cabling such as inter-building campus backbones, 1000Base-LX is for Single-mode Fiber-optic Cable at 1310nm, though multimode fiber can be used for short inter-building backbones and intra-building cabling applications.

Designed to support interconnection of equipment clusters, this specification uses 150 ohm STP cabling similar to IBM Type 1 cabling over distances no greater than 25 meters. When cabling for Gigabit Ethernet using fiber, you should follow the ANSI/TIA-568-C standards for 62.5/125 micron or 50/125 micron multimode fiber for horizontal cabling and 8.3/125 micron single-mode fiber for backbone cabling. See Table 6 of Annex D in ANSI/TIA-568-C.0.


Gigabit Ethernet over Category 5 or better UTP cable where the installation has passed performance tests specified by ANSI/TIA/EIA-568-B. Maximum distance is 100 meters from equipment outlet to switch. The IEEE designed 1000Base-T with the intention of supporting Gigabit Ethernet to the desktop. One of the primary design goals was to support the existing base of Category 5 cabling.
10 Gigabit Ethernet (10,000Mbps)

The IEEE approved the first Gigabit Ethernet specification in June, 2002: IEEE 802.3ae. It defines a version of Ethernet with a nominal data rate of 10 Gbit/s. Over the years the following 802.3 standards relating to 10GbE have been published: 802.3ae-2002 (fiber -SR, -LR, -ER, and -LX4 physical-media-dependent devices[PMDs]), 802.3ak-2004 (-CX4 copper twin-ax InfiniBand type cable), 802.3an-2006 (10GBASE-T copper twisted pair), 802.3ap-2007 (copper backplane -KR and-KX4 PMDs), and 802.3aq-2006 (-LRM over legacy multimode fiber -LRM PMD with electronic dispersion compensation [EDC]). The 802.3ae-2002 and 802.3ak-2004 amendments were consolidated into the IEEE 802.3-2005 standard. IEEE 802.3-2005 and the other amendments have been consolidated into IEEE Standard 802.3-2008. In the premises environment, 10 Gigabit Ethernet is mostly used in data center storage servers,high-performance servers, and in some cases for intra-building backbones. It can be used for connection directly to the desktop.

>>10GBASE-SR (Short Range)

10GBASE-SR (short range) uses 850nm VCSEL lasers over multimode fibers. Low-bandwidth 62.5/125 micron (OM1) and 50/125 micron (OM2) multimode fiber support limited distances of 33–82 meters. To support 300 meters, the fiber-optics industry developed a higher bandwidth version of 50/125 micron fiber optimized for use at 850nm.

>>10GBASE-LR (Long Range)

10GBASE-LR (long range) uses 1310nm lasers to transmit over single-mode fiber up to 10 kilometers. Fabry-Pérot lasers are commonly used in 10GBASE-LR optical modules. Fabry-Pérot lasers are more expensive than 850nm VCSELs because they require the precision and tolerances to focus on very small single-mode core diameters (8.3 microns). 10GBASE-LR ports are typically used for long-distance communications.


10GBASE-LX4 uses coarse wavelength division multiplexing (WDM) to support 300 meters over standard, low-bandwidth 62.5/125 micron (OM1) and 50/125 micron (OM2) multimode fiber cabling. This is achieved through the use of four separate laser sources operating at 3.125Gbps in the range of 1300nm on unique wavelengths. This standard also supports 10 kilometers over single-mode fiber. 10GBASE-LX4 is used to support both standard multimode and single-mode fiber with a single Optical Transceivers. When used with standard multimode fiber, an expensive Mode Conditioning Patch Cord is needed. The mode conditioning patch cord is a short length of single-mode fiber that connects to the multimode in such a way as to move the beam away from the central defect in legacy multimode fiber. Because 10GBASE-LX4 uses four lasers, it is more expensive and larger in size than 10GBASE-LR. To decrease the footprint of 10GBASE-LX4, a new module,10GBASE-LRM, was standardized in 2006.
10GBASE-LRM (long reach multimode) supports distances up to 220 meters on standard, lowbandwidth 62.5/125 micron (OM1) and 50/125 micron (OM2) using a 1310nm laser. Expensive mode conditioning patch cord may also be needed over standard fibers. 10GBASE-LRM does not reach quite as far as the older 10GBASE-LX4 standard. However, it is hoped that 10GBASE-LRM modules will be lower cost and lower power consumption than 10GBASE-LX4 modules. (It will still be more expensive than 10GBASE-SR.)

10GBASE-T supports 10Gbps over Category 6A UTP or Category 7 shielded (per ISO/IEC 11801Ed. 2) twisted-pair cables over distances of 100 meters. Category 5e is supported to much lower distances due to its limited bandwidth. Special care needs to be taken in installing Category 6A cables in order to minimize alien cross-talk on signal performance.

40 and 100 Gigabit Ethernet

The IEEE 802.3ba committee is standardizing 40 and 100 Gigabit Ethernet. This will be deployed over OM3 50/125 multimode optical fiber for 100–200 meters, and research is progressing to make it available over UTP for distances up to 10 meters.This could be the speed point at which there is mass conversion of copper to fiber-based systems.