10GBASE-T Cabling Vs. 10G SFP+ Cabling in 2017

When it comes to 10G network, we usually make a choice between 10GBASE-T cabling and 10G SFP+ cabling. In fact, many people still prefer 10G SFP+ cabling that uses SFP+ DAC cable, because they think it matches better for the requirements and emerging trends of today’s data center. Now the 10G network is quickly becoming mainstream, especially on consumer desktop systems. That means the cost of 10GBase-T switches will need to come down. Also, other “IOT” home components that decide to offer 10G will probably go for 10GBASE-T, such as game consoles, streaming boxes, etc. So, do you still recommend 10G SFP+ over 10GBASE-T nowadays for network deployment? This article will discuss this topic.

10GBASE-T Vs. 10G SFP+

Vote for 10GBASE-T
  • The 10GBASE-T ports are physically smaller which is important for non-data center devices. They are also easier to use. You just plug in an ethernet cable and it works. No need to deal with optical transceiver compatibility and all of those problems.
  • 10GBASE-T cabling is backwards compatible with 1G ports which will still be used for things like IPMI and other low bandwidth devices. You could just get one 10GBASE-T switch and connect up everything you have to it. Going with 10G SFP+ makes it difficult to find something that juggles enough of both kinds of ports for all of your 10G and 1G devices.
Vote for 10G SFP+
  • 10G SFP+ is better for future-proof cabling system. You can migrate to 40G QSFP+ smoothly and keep the existing cables. Even OM4 can do 100Gbps up to 150 meters. It is not known if Cat6a, Cat7 or even Cat8 will be able to pull off anything above 10Gb. And this will be stuck at 10G for quite some time.
  • 10G SFP+ interface that has been widely deployed for 10G ToR switches continues to use less power, typically less than 1 W per port. It also offers better latency—typically about 0.3 microseconds per link. While 10GBASE-T latency is about 2.6 microseconds per link due to more complex encoding schemes within the equipment.
  • 10GBASE-T switches are still expensive and there is a very limited choice of those that actually work. Also 10GBASE-T NICs add a premium over 10G SFP+. From a cost perspective, it is cheaper to go the 10G SFP+ cabling since you can find so many used 10G switches for deals, along with decent NICs. In addition, there is more support, driver wise for 10G SFP+ NICs than 10GBASE-T.

By comparison, we find that if flexibility and scalability are more important, 10GBASE-T cabling is a better option; but if power consumption and lower latency are critical, 10G SFP+ cabling may be more suitable. We also find that the cost of 10GBASE-T cabling is no longer in the ascendant. If 10GBASE-T want to acquire an absolute advantage, the primary goal now is to get 10GBASE-T cheaper and more power efficient and bring the cost way down so it can finally replace Gigabit as the next base level networking.

A Third Choice

If you do not have to choose vanilla or chocolate, you could have both 10GBASE-T and 10G SFP+ in the same switch, such as Ubiquiti EdgeSwitch 16 XG and UniFi Switch 16 XG. Both of them feature twelve 10G SFP+ ports and four RJ45 10GBASE-T ports to efficiently deliver and aggregate data at 10G speeds. But some people point out that the 10GBASE-T ports on the Ubiquiti switches actually don’t work reliably at 10Gbps speed. Therefore, before you buy it for those four RJ45 10GBASE-T ports, you have to make sure that they can work without issues. Here is a figure of them for you.

Ubiquiti EdgeSwitch 16 XG and UniFi Switch 16 XG

Conclusion

If you were building out a 10G cabling system from scratch today, which technology would you choose for your 10G network connectivity? Both 10GBASE-T cabling and 10G SFP+ cabling have their own advantages. And both of them occupy an important position in the future of network design and best practices. As for which one to choose, it all depends on your specific need. FS.COM can provide cost-effective solution for your 10G network deployment, such as Cat5e bulk cable, 10G SFP+ transceiver, 10G SFP+ DAC cable, 10GBASE-T SFP+ Transceiver and so on. For more details, please visit our site.

100G Optical Transceiver Solutions

Network has been rapidly developed over the years. People are always dreaming of entering into the world of higher bandwidth. And now the dream has come true since we already reach the 100 gigabit Ethernet (100 GbE) networking. This technology enables the transmission at rates of 100 gigabits per second (100 Gbit/s). The standard was first defined by the IEEE 802.3ba in 2010. To accommodate the trend, different types of 100G optical transceiver emerge as a reflection of the development. QSFP28 (quad small form-factor pluggable 28), CFP (centum form-factor pluggable) and CXP (centum extended-capability form-factor pluggable) are most commonly used optical transceiver solutions for 100G active equipment. Today, the article will mainly introduce these three solutions.

100G Optical Transceiver Solutions
CFP

Specified by a multi-source agreement (MSA) between competing manufacturers, CFP was designed to replace many former transceivers like SFP+, SFP, XFP with a significantly larger support of 100 Gbps. The electrical connection of a CFP uses 10 x 10Gbps lanes in each direction (RX, TX). The optical connection can support both 10 x 10Gbps and 4 x 25Gbps variants. In addition, there are another two CFP next-generation 100G form factors — CFP2 and CFP4. Compared to the existing CFP, CFP2 and CFP4 are respectively double and quadruple front panel port density. All of them are now available on the market.

CFP

QSFP28

QSFP28 transceiver is designed for 100G Ethernet which uses the 4 x 25 wiring specification. It has the same size as 40G QSFP+ but with a higher performance. The 100G QSFP28 is implemented with four 25Gbps lanes. “28” stands for the highest possible rate of 4x28Gbps in transmission. Two basic versions of QSFP28 transceivers are 100GBASE-SR4 QSFP28 transceiver and 100GBASE-LR4 QSFP28 transceiver, which are respectively used for multimode fiber (MMF) and single-mode fiber (SMF) 100G applications. 100GBASE-SR4 QSFP28 operates at multimode fiber for a distance of 100 m. 100GBASE-LR4 QSFP28 can support a much longer distance of 10 km.

qsfp28
100GBASE-LR4 QSFP28
CXP

As a complement to CFP, CXP is also specified by MSA aiming at the clustering and high-speed computing markets. CXP has a higher density network interface with 45 mm in length and 27 mm in width, making it slightly larger than an XFP or 1/4 size of a CFP transceiver. It has a form-factor pluggable active device interface with 12 transmit and 12 receive lanes, capable of supporting bit-rates in excess of 10 Gbps per lane on a variety of optical transmission technologies.

cxp

Future Trend of Optical Transceivers in Data Centers

In the future, higher bit rates over 100G are the inevitable trend in data centers. The next data center developments will be following the 4x trend set by 40G and 100G, such as 200G, 400G, etc. Accordingly, optical transceivers should keep up with the steps and satisfy higher demands.

In 200G applications, next generation switching ASICs (Application Specific Integrated Circuits) are expected to have native port speeds of 50G and 128 ports, which correspond to a net throughput of 6.4 Tbps. This means that 200G QSFP modules (QSFP56, 4 x 50 Gbps) would result in a front panel bandwidth of 6.4 Tbps (32 x 200 Gbps).

For 400G applications, the module must accommodate either 16 x 25G or 8 x 50G electrical input lanes, which exceeds the 4 lanes defined for the QSFP. 400G transceivers will have larger size than QSFP. However, meeting the 3.5W power limit of QSFP modules appears infeasible for some 400G implementations. Thus, proposals for larger form factors for 400G can be anticipated from CFP MSA, which has had large success in 100G with CFP, CFP2, and CFP4. In this case, a key requirement will be that the size allows for at least 16 ports on the front panel in order to satisfy a net throughput of 6.4 Tbps (16 x 400 Gbps, and possibly more).

Conclusion

The market of 100G optical transceivers is accelerating. It is no doubt that more 100G transceivers and other assemblies will be deployed in data centers. QSFP28, CFP series and CXP are presently the most suitable solutions for 100G applications. Definitely one of them can solve your project needs.

The Main Parameters of Cisco SFP Transceiver Modules

Cisco System, Inc. established in 1984, is an international reputable company providing internet solutions, equipment and software products, whose products are mainly used to connect a computer network system, Cisco routers, switches and other equipment carries 80% of global Internet communications, of the new economy in the Silicon Valley legend. Over the past 20 years, Cisco has almost become synonymous with the Internet, network applications, productivity, Cisco have become the market leader in every area of its entry. The company is also specialized in producing transceiver modules include a well advanced and useful type of transceiver namely mini GBIC or SFP module.

SFP is the abbreviation of Small Form Factor Pluggable referring to a compact small and hot-pluggable transceiver. Cisco SFP transceivers are designed to change the series electric signals to the serial optical signals for either telecommunication or data communication fields. The transceiver is usually working with a network device a switch or a router to connect to a copper networking cable or fiber optic. SFP is a recognized industry standard thus is supported by almost every leading vendors such as H3C, HP, Huawei. It is designed to support communication in standards such as Gigabit Ethernet, SONET, Fibre Channel and many others.

The main parameters of the SFP module

Average transmit optical power (TxLOP: Optical Average Power) average transmit optical power refers to the signal logic 1 when the optical power and for 0:00 the arithmetic mean of the optical power. P0 + the P1 PAVG = 2 (dBm)

Consumers light ratio (ER: ExtinctiRatio) signal logic to 1, the optical power and is 0 when the light power size ratio. The calculation formula for: P1ER = 10log P0 (dB) ER extinction ratio, the unit is dB, P1 and P0 represents the logic 1 and 0 when the optical power.

The minimum average light reception sensitivity (Receiver Sensitivity) measure the receiving end of a certain bit error rate (1 × 10exp (-12)) To ensure the desired reception power, in units of dBm. BER is within a longer period of time, after received after the receiving side of the photoelectric conversion error output terminal of the number of symbols with the BER tester gives the ratio of the number of symbols.

Loss indicative signal (LOS Assert) restore instruction (LOS Dessert) receiver output an electric signal, and the signal is lost and the potential level of the adequacy reflects the intensity of the optical signal received by the receiver, to determine by comparing the potential of the preset potentiometer light whether the signal is lost. Potential has a certain effect hysteresis comparator to achieve, usually default electrical signal corresponding to the optical power as an indication, in dBm

Eye mask margin (EMM: Eye Mask Margin) eye opening, refers to the degree of “open” in the best sampling point eye amplitude distortion-free opening of the eye diagram should be 100 [%]. Eye diagram template tolerance eye mask expansion, until the eye diagram of the sampling points into the template of the biggest expansion of the expansion area percentage.

Cisco SFP is flexible in its extensive set of items including Cisco GLC-T, Cisco GLC-SX-MM, Cisco GLC-LH-SM, Cisco CWDM SFP, which can be used with the union of 1000BASE-T, 1000BASE-SX, 1000BASE- LX/LH, 1000BASE-EX, 1000BASE-ZX, or 1000BASE-BX10-D/U in a port-by-port basis.