Talk About 2.5G And 5G

Network technology is developing rapidly. To keep up with the trend, data centers are required to upgrade constantly, from 10G to 40G, 40G to 100G and even 100G to 400G. However, for some small business data centers with 1G infrastructures, directly migrating from 1G to 10G is a little fast. Is there any slower Ethernet standards to fill the gap between 1G Ethernet and 10G Ethernet speeds? The answer is Yes—2.5 Ethernet and 5G Ethernet. This article will talk about 2.5G and 5G.

Overview of 2.5G And 5G

The physical (PHY) layer transmission technology of IEEE 802.3bz is based on 10GBASE-T, but operates at a lower signaling rate. By reducing the original signal rate to  1/4 or  1/2, the transfer rate drops to 2.5 or 5 Gbit/s, respectively. The spectral bandwidth of the signal is reduced accordingly, lowering the requirements on the cabling, so that 2.5GBASE-T and 5GBASE-T can be deployed at a cable length of 100 meters on unshielded Cat5e cable and Cat6 cable, respectively. The following figure shows the comparison of twisted pair based Ethernet technologies.

comparison of twisted pair based Ethernet technologies

Cons And Pros of 2.5G/5G Ethernet Standards

As 2.5G and 5G Ethernet standards came out after 10G Ethernet standard, there are mixed reviews for them. This part will focus on cons and pros of 2.5G/5G Ethernet standards.

Cons of 2.5G And 5G

When 2.5G Ethernet and 5G Ethernet standards came out, many people didn’t think much of them. They commented that:

  • 5GBase-T and 5GBase-T are more going to be used for wifi rollouts. And they are pretty much strictly for enterprise wireless deployments.
  • 10GbE is getting pretty cheap. Lots of new desktop motherboards now have 10G NICs inside them and the premium seems to be less than $100 too, which isn’t too bad. What’s missing is a bunch of 10G home switches and routers.
  • As for the availability, the 10G has 2 models out while the 2.5G and 5G are both “coming soon”. Due to the economies of scale and the penetration, 10G already has IMO. While 2.5G and 5G will never be widely adopted or supported.
  • There are not that many chip sets that support 2.5G Ethernet and 5G Ethernet yet as they really only got finalized. Also, most cards that support them right now also support 10Gbe.
Pros of 2.5G And 5G

What exists is reasonable. One estimate is that there are 70 billion meters of Cat5e and Cat6 cabling have been sold between 2003 and 2014. With such a significant amount of existing infrastructure at stake, it’s hardly surprising that most enterprises want to extend the existing cabling, component and equipment investments in the standard Ethernet wireless closet. Therefore, it is not difficult to find that 2.5G Ethernet and 5G Ethernet standards have their advantages.

  • Cat5 and Cat6 cabling can’t support 10G Ethernet up to 100 meters, but they will be able to support the emerging 2.5Gbps and 5Gbps standards, thereby preserving the value of the existing copper cable plant.
  • Adopting new 2.5G and 5G can satisfy the need of increasing data rates of wireless networking. The new 802.11ac Wi-Fi standard increases wireless bandwidth, supporting Ethernet speeds of 1.7 Gbps to 2.5 Gbps. With the coming of the next generation of wireless networking, 802.11ac Wi-Fi Wave 2, wireless network speeds could increase to as high as 6.8 Gbps.
  • Besides the need from the Wi-Fi industry, a 2.5G/5G version will also aid in other applications such as enterprise infrastructure, cellular Wi-Fi offloads, small cells, security cameras, multiple industrial uses and PoE technology.
  • These two new Ethernet standards have plenty of attributes to ensure success, such as ease of use, backward compatibility, faster speeds without requiring a cable upgrade, incremental speed upgrades, multi-vendor interoperability, not to mention optimized cost and performance.
Conclusion

From the above content, we can conclude that 2.5G/5G Ethernet standards have both pros and cons. For those who want to upgrade cabling system to 10G, 2.5G/5G is not useful. While for small business and home network, 2.5G/5G is a cost-effective solution. No matter what your cable plant is, choosing a suitable migration path is the most important thing. FS.COM can provides high quality components for your cable plant, such as Cat5e cable, Cat6 cable, wireless access point and PoE switch. For more details, you can visit our site.

UTP Cables Selection Guide

Since the copper cable is capable of the advantages, such as less expensive electronics and flexibility, the fiber optic cable can’t just replace it. As a result, while the consumer electronics keep going increasingly wireless, many LANs still rely heavily on copper cables to handle all the heavy lifting when it comes to transmitting data. For example, if you want to plug your computer into a broadband Internet connection, you just need a cable to complete this connection. This paper will introduce some common categories of copper cable used in today’s networks.

Category 3

The CAT3 cable is an UTP (unshielded twisted pair) cable whose data transmission rate is at the speed of 10Mbps. It is one of the oldest copper cable, and was used on a large scale in the early 90’s when it was the industry standard for computer networks. Of course, it is still used today for wiring offices and homes. Although it is still used in two-line phone configurations, it is no longer the the darling of the times when deploy the networks due to the advent of the Category 5 cable.

Category 5

As the successor of the CAT3 cable, CAT5 cable is capable of superior performance. Compared with CAT3 cable, CAT5 cable is the same with it in the structure–UTP, but has higher transfer rate, up to 100Mbps. The fact is that the speed of 100Mbps is also called Fast Ethernet, so the CAT5 cable has become the first Fast Ethernet-capable cable. But Now, it has been replaced by the CAT5e cable.

Category 5e

The CAT5e standard is an enhanced version of CAT5 cable, which is optimized to reduce crosstalk, or the unwanted transmission of signals between data channels. Similar to CAT 5 in appearance, CAT5e introduces some new wrinkles in the equation. For one thing, CAT5e uses four pairs of copper wire rather than the two that CAT5 relies on. The excellent capacity, that the speed of it can be up to 1000Mbps and the bandwidth can be up to 100 MHz, makes it become the one of the most popularized cable in today’s market. That is also the reason why it can replace the CAT5 cable.

Category 6

Supporting frequencies of up to 250 MHz and the 10BASE-T, 100BASE-TX, 1000BASE-T, and 10GBASE-T standards, it can handle up to 10 Gbps in terms of throughput. Some CAT6 cables are available in STP (Shielded Twisted Pair) forms or UTP forms. Compared with CAT5e cable, it has better insulation and thinner wires which can provide a higher signal-to-noise ratio, and is better suited for environments in which there may be higher electromagnetic interference. However, when deploying a network, the cost of CAT5e cable is much cheaper than CAT6 cable.

Category 6a

CAT6a’s data transmission rate is up to 10,000 Mbps and the maximum bandwidth is 500 MHz. Since it is in the form of STP, a specialized connector is usually needed to ground the cable. When you’re wiring up your home or office for Ethernet for the long haul, CAT6a is the perfect choice in terms of future-proofing.

Category 7

CAT7 cable, also known as Class F, is a fully shielded cable that supports speeds of up to 10 Gbps (10,000 Mbps) and bandwidths of up to 600 Mhz. It consists of a SSTP (screened, shielded twisted pair) of wires, and the layers of insulation and shielding contained within them are even more extensive than that of CAT6 cables. Because of this shielding, It is thicker, more bulky, and more difficult to bend. Additionally, each of the shielding layers must be grounded, or else performance may be reduced to the point that there will be no improvement over CAT6, even worse than CAT5. For this reason, it’s very important to understand the type of connectors at the ends of a CAT7 cable.

Conclusion

When you need a cable to attach your computer to the modem in your home or your office, you can choose the right cable after reading this guide. There are three factors that you should take into consideration: price, the quality of the cables and the kinds of device you have to connect. Fiberstore can offer the most cost-effective solution for your copper cabling, such as CAT3 cable, CAT5e cable and so on. Besides, the price and the quality of these cables are extremely attractive. Wanna buy? Just visit FS.COM.

Originally published at http://www.chinacablesbuy.com/utp-cables-selection-guide.html

Size and Weight Advantages of Fiber Optic Cable over Copper Cable

Size and weight factors are always needed to be taken into consideration when preparing for a cable plant installation. Fiber optic cables are now running existing conduits or raceways that are partially or almost completely filled with copper cable. This is another area where small fiber optic cable has advantages over copper cable. In this article, we will do a comparison and try to determine the reduced-size and weight advantages of fiber optic cable that over copper cable.

advantages of fiber optic cable

Advantages of Fiber Optic Cable

As we already know, a coated optical fiber is typically 250um in diameter. We learn that fiber optic ribbon cable sandwich up to 12 coated optical fibers between two layers of Mylar tape. Twelve of these ribbons stacked on top of each other form a cube roughly 3mm by 3mm. This cube can be placed inside a buffer and surrounded by a strength member and jacket to form a cable. The overall diameter of this cable would be only slightly larger than an RG6 coaxial cable or a bundle of four Category 5e cable.

So how large would a copper cable have to be to offer the same performance as the 144 optical fiber ribbon cable? That would depend on transmission distance and the optical fiber data rate. Take Category 5E cable as an example, let’s place a bundle of Category 5e cables up against the 144 optical fiber ribbon cable operating at a modest 2.5Gbps data rate over a distance of just 100m.

A Cat5e cable contains four conductor pairs and as defined in ANSI/TIA-568-B.2 is 0.25” in diameter. Each pair is capable of a 100MHz transmission over 100m. 100MHz transmission carries 200 million symbols per second. If each symbol is a bit, the 100MHz Category 5e cable is capable of a 200Mbps transmission rate. When the performance of each pair is combined, a single Category 5 cable is capable of an 800Mbps transmission rate over a distance of 100m

Now let’s see how many Category 5e cables will be required to provide the same performance as the 144 optical fiber ribbon cable. The 144 optical fiber ribbon cable has a combined data transmission rate of 360Gbps. When we divide 360Gbps by 800Mbps, we see that 450 Category 5e cables are required to equal the performance of this modest fiber-optic system.

When 450 Category 5e cables are bundled together, they are roughly 5.3 inches in diameter. As noted earlier in this chapter, the 144 optical fiber ribbon cable is approximately the size of four Category 5e cables bundled together. The Category 5e bundle thus has a volume of roughly 112.5 times greater than the 144 optical fiber ribbon cable. In other words, Category 5e bundles need 112.5 times more space in the conduit than the 144 optical fiber ribbon cable.

This comparison we just made is very conservative. This distance we used was kept very short and the transmission rate for the optical fiber was kept low. We can get even a better appreciation for the cable size reduction fiber optic cable offers if we increase the transmission distance and the data rate.

In this comparison, let’s increase the transmission distance to 1,000m and the data transmission rate to 10Gbps. The bandwidth of a copper cable decreases as distance increases, just as with fiber-optic cables. Because we have increased the transmission distance by a factor of 10, it’s fair to say that the Category 5e cable bandwidth will decrease by a factor of 10 over 1000m.

With a reduction in bandwidth by a factor of 10, we will need ten times more Category 5e cables to equal the old 2.5Gbps performance. In other words, we need 4,500 Category 5e cables bundled together. In this comparison, however, the bandwidth has been increased from 2.5Gbp to 10Gbps. This means we have to quadruple the number of Category 5e cables to meet the ban width requirement. We now need 18,000 Category 5e cables bundled together. Imagine how many cables we would need if the transmission distance increased to 80,000m. We would need whopping 1,440,000 Category 5e cables bundled together.

These comparisons vividly illustrate the size advantages of fiber optic cable that has over copper per cables. The advantage becomes even more apparent as distances increase. The enormous capacity of such as small cable is exactly what is needed to install high-bandwidth systems in buildings where the conduits and raceways are almost fully populated with copper cables.

Now we have calculated the size advantages of fiber optic cable over Cat5e cable. Let’s look at the weight advantages of fiber optic cable. It is pretty easy to see that thousands, tens of thousands, or millions of Cat5e cable bundled together will outweigh a ribbon fiber optic cable roughly one half of an inch in diameter. It’s difficult to state exactly how much less a fiber optic cable would weigh than a copper cable performing the same job – these are just too many variables in transmission distance and data rate. However, it’s not difficult to imagine the weight savings that fiber-optic cables offer over copper cables. These weight savings are being employed in commercial aircraft, military aircraft, and the automotive industries, just to mention a few.

Conclusion

From the above, we have learned the size and weight advantages of fibre optic cable. FS, a reliable provider of networking equipment, offers a comprehensive line of fiber optic cables and Ethernet cables. Any queation about cabling, please contact us via sales@fs.com.

Related Articles:
The Advantages and Disadvantages of Optical Fiber
FS Fiber Optic Cable Types