MTP-8: Simplest Way to Get 40G Connection

As data centers networks are shifting from 10G to 40G and beyond, it is necessary to seek ideal ways to connect 40G high speed switches populated with higher rate transceivers QSFP+, and to connect 40G switch to existing 10G elements populated with SFP+ modules. There are different approaches to connect 40G switches, or to connect 40G switch to 10G switch. However, by using MTP-8 solution, the simplest way to achieve direct 40G connectivity has been proved feasible and favorable in real applications. This article will introduce the deployment of MTP trunk cable in 40G to 40G connection, and MTP harness cable in 10G to 40G connection.

Basis of MTP Trunk and Harness Cable

MTP trunk cable has MTP connectors terminated on both ends of the fiber optic cable. It is often used to connect MTP port modules for high density backbone cabling in data centers and other high dense degree environments. Currently, most of the MTP trunk cables for high data rate like 40G and 100G are still 12-fiber or 24-fiber. MTP harness cable, also called MTP breakout or fan-out cable, has MTP connectors on one end and discrete connectors (duplex LC, SC, etc.) on the other end. The most common configurations of MTP-LC harness cables are 8-fiber MTP to 4 LC duplex, 12-fiber MTP to 6 LC duplex and 24-fiber MTP to 12 LC duplex. A single MTP connector is able to terminate the combination of 4, 8, 12, 24, 48 fiber ribbon cables. The multi-fiber design provides quick deployment and scalable solution that improves reliability and reduces installation or reconfiguration time and cost.

10G to 40G Connection via MTP Harness Cable

In order easily and quickly finish the migration from 10G network to 40G network, you can use 8-fiber MTP to 4 LC duplex harness cable, 40GBASE-SR4 QSFP+ and 10GBASE-SR SFP+ modules. The configuration of such a link is illustrated by figure 1. On the left the 8-fiber MTP connector is plugged into the MTP port of the 40GBASE-SR4 QSFP+ transceiver installed on the 40G switch; on the right side four duplex LC connectors are plugged into the ports of four 10GBASE-SR SFP+ transceivers installed on the 10G switch. In 10G to 40G migration, using 8-fiber MTP to LC harness cable can ensure every strand of fiber be used, and no one wasted.

10G to 40G via MTP-8 harness

Figure 1: 10G to 40G Migration via MTP-LC Harness Cable

40G to 40G Connection via MTP Trunk Cable

To support your 40G networking needs, you can simply use 12-fiber MTP trunk cable and 40GBASE-SR4 QSFP+ transceiver to accomplish a quick connection for two 40G switches in your network. The following figure shows a concrete example which uses one 12-fiber MTP trunk cable and two 40GBASE-SR4 QSFP+ transceivers to connect two 40G switches. Though the MTP trunk cable in this case is base-12, the fiber count actually in use is eight, leaving four strands unused. That is to say delivering 40G over 4 lanes multimode fiber at 10 Gb/s per lane. Totally only eight fibers (4 transmit, 4 receive) are required for the 4x10G solution. It is the same as the 4x25G solution for 100G.

40G to 40G via MTP-8 trunk

Figure 2: 40G to 40G Connection via MTP Trunk Cable

The above two examples are both applications of MTP-8 solution in 40G connectivity. You will find that only a few components are needed in the whole installation, and the link will be very easy and flexible, as well as cost-effective.


Current 40G connectivity can be obtained by MTP-8 solution. Though present market is still popular with 12-fiber or 24-fiber MTP, 8-fiber MTP solutions that are starting to hit the market are considered the most efficient option since they support current and future duplex fiber applications (such as 200G and 400G) and using modules that break out 8-fiber MTPs to duplex LCs, as well as current and future 8-fiber applications without the need for conversion cords or modules.

Data Center Architecture Designs Comparison: ToR Vs. EoR

The interconnection of switches and warranty of data communication are the basic aspects to consider when designing a data center architecture. Today’s data centers have been shifted into 1RU and 2RU appliances, thus setting the 1RU and 2RU switches into the same-sized racks can greatly save space and reduce cabling demands. Typically, Top of Rack (ToR) and End of Row (EoR) are now the common infrastructure designs for data centers. In this article, we will mainly discuss the differences between these two approaches.


Overview of ToR & EoR
What Is ToR?

ToR approach refers to the physical placement of network access switch in the top of a server rack. Servers are directly linked to the access switch in this method. Each server rack usually has one or two access switches. Then all the access switches are connected with the aggregation switch located in the rack. Only a small amount of cables are needed to run from server rack to aggregation rack.


What Is EoR?

In the EoR architecture, each server in individual racks are directly linked to a aggregation switch eliminating the use of individual switches in each rack. It reduces the number of network devices and improves the port utilization of the network. However, a large amount of cables is needed for the horizontal cabling. Along with the EoR approach, there is also a variant model named as MoR (Middle of Row). The major differences are that the switches are placed in the middle of the row and cable length is reduced.


Comparison Between ToR & EoR

As for ToR, the cost of cables are reduced since all server connections are terminated to its own rack and less cables are installed between the server and network racks. Cable management is also easier with less cables involved. Technicians can also add or remove cables in a simpler way.

In the EoR, device count is decreased because not every rack should equip the switches. Thus, less rack space is required in the architecture. With less devices in data center, there will be less requirements for the cooling system which also reduces the using of electricity power.


In reverse, there are also some limitations for each architecture. For ToR, although the cables are reduced, the number of racks is still increased. The management of switches may be a little tricky. In addition, ToR approach takes up more rack space for the installation of switches.

As for EoR, its Layer 2 traffic efficiency is lower than the ToR. Because when two servers in the same rack and VLAN (virtual local area network) need to talk to each other, the traffic will go to the aggregation switch first before comes back. As less switches are used in EoR design, more cables are deployed between racks triggering higher possibility of cable mess. Skillful technicians are required when carrying out the cable management.

Physical Deployments of ToR & EoR
ToR Deployment

One is the redundant access switch deployment which usually demands two high-speed and individual ToR switches that connect to the core network. Servers are interconnected to access switches deployed within the server racks. Another is the server link aggregation with ToR deployment. Two high-speed ToR switches are part of the same virtual chassis. Servers can connect to both of the switches located at top of rack with link aggregation technology.

EoR Deployment

EoR access switch deployment is very common to extend all the connections from servers to the switching rack at the end of row. If the deployment is needed to support the existing wiring, you can also deploy a virtual chassis.


ToR and EoR are the common designs for data center architecture. Choosing the proper one for your network can promote the data center efficiency. From this article, you may have a general understanding about these two methods. Hope you can build up your data center into a desired architecture.

Key Components to Form a Structured Cabling System

Building a structured cabling system is instrumental to the high performance of different cable deployments. Typically, a structured cabling system contains the cabling and connectivity products that integrates the voice, data, video, and various management systems (e.g. security alarms, security access, energy system, etc.) of a building. The structured cabling system is based on two standards. One is the ANSI/TIA-568-C.0 of generic telecommunications cabling for customer premises, and another is the ANSI/TIA-568-C.1 of commercial building telecommunications cabling for business infrastructures. These standards define how to design, build, and manage a cabling system that is structured. Six key components are included to form a structured cabling system.

Six Subsystems of a Structured Cabling System

Generally speaking, there are six subsystems of a structured cabling system. Here will introduce them respectively for better understanding.


Horizontal Cabling

The horizontal cabling is all the cabling between telecommunications outlet in a work area and the horizontal cross-connect in the telecommunications closet, including horizontal cable, mechanical terminations, jumpers and patch cords located in the telecommunications room or telecommunications enclosure, multiuser telecommunications outlet assemblies and consolidation points. This type of wiring runs horizontally above ceilings or below floors in a building. In spite of the cable types, the maximum distance allowed between devices is 90 meters. Extra 6 meters is allowed for patch cables at the telecommunication closet and in the work area, but the combined length of these patch cables cannot exceed 10 meters.

Backbone Cabling

Backbone cabling is also known as vertical cabling. It offers the connectivity between telecommunication rooms, equipment rooms, access provider spaces and entrance facilities. The cable runs on the same floor, from floor to floor, and even between buildings. Cable distance depends on the cable type and the connected facilities, but twisted pair cable is limited to 90 meters.

Work Area

Work area refers to space where cable components are used between communication outlets and end-user telecommunications equipment. The cable components often include station equipment (telephones, computers, etc.), patch cables and communication outlets.

Telecommunications Closet (Room & Enclosure)

Telecommunications closet is an enclosed area like a room or a cabinet to house telecommunications equipment, distribution frames, cable terminations and cross connects. Each building should have at least one wiring closet and the size of closet depends on the size of service area.

Equipment Room

Equipment room is the centralized place to house equipment inside building telecommunications systems (servers, switches, etc.) and mechanical terminations of the telecommunications wiring system. Unlike the telecommunications closet, equipment room houses more complex components.

Entrance Facility

Entrance facility encompasses the cables, network demarcation point, connecting hardware, protection devices and other equipment that connect to the access provider or private network cabling. Connections are between outside plant and inside building cabling.

Benefits of Structured Cabling System

Why do you need the structured cabling system? Obviously, there are many benefits for using the system. A structured cabling can standardize your cabling systems with consistency so that the future cabling updates and troubleshooting will be easier to handle. In this way, you are able to avoid reworking the cabling when upgrading to another vendor or model, which prolongs the lifespan of your equipment. All the equipment moves, adds and changes can be simplified with the help of structured cabling. It is a great support for future applications.



From this article, we can know that a structured cabling system consists of six important components. They are horizontal cabling, backbone cabling, work area, telecommunications closet, equipment room and entrance facility. Once you split the whole system into small categories, the cabling target will be easier to get. As long as you keep good management of these subsystems, your cabling system is a success to be called as structured wiring.

Importance of Using Fiber Color Codes in Data Center

The utilization of color codes in data center effectively helps technicians make better cable management and reduce human errors. Without redundant checking process, people can easily get the information of the device by only one look. Making good use of the color code system can surely save much time during work. This article will mainly present the widely accepted color code system and its important functions.


Introduction to Color Code Systems

Fibers, tubes and ribbons in fiber optic cables are usually marked with different color codes to facilitate identification. There are many color code systems for national or international use. All these systems are characterized by using 12 different colors to identify fibers that are grouped together in a common bundle such as a tube, ribbon, yarn wrapped bundle or other types of bundle.

Different color code standards may be used in different regions. For example, the S12 standard is used for micro cables and nano cables in Sweden and other countries. The Type E standard is defined by Televerket and Ericsson used in Sweden. The FIN2012 standard is used in Finland, etc. However, there is one color code system widely recognized in the world, namely the TIA/EIA-598 standard.

Specifications of TIA/EIA-598 Color Codes

The following picture gives the fiber color coding of TIA/EIA-598 standard. If more than 12 fibers or tubes are to be separated, the color sequence is normally repeated with ring marks or lines on the colored fibers and tubes. As for the fiber cable jacket, orange, yellow, aqua and black color codes are used for their distinction.


Functions of Fiber Color Codes in Data Center
Distinguishing Fiber Grades

As mentioned above, the outer jacket color codes are able to identify the fiber grades. OM1/OM2 cables often adopts the orange jacket, OM3/OM4 cables with aqua jacket, single-mode cables with yellow jacket and hybrid cables (indoor/outdoor cables and outside plant cables) with black jacket. One thing to note is that the mix of OM1 and OM2 or OM3 and OM4 cables may be troublesome. You should make sure not to mingle these cables with the same color code.

Identifying Fiber Patch Cords

Using color codes to label fiber patch cords can reduce the potential for human error. For instance, you may highlight mission-critical patch cords in red, and then teach all technicians that a red patch cord should only be moved with proper authorization or under supervision. Likewise, keeping the fiber connector color consistent with fiber grade color standards will make it simple for technicians to use the right connectors with the cables.

Separating Different Ports

The color-coded port icons can be helpful in identifying different network routings in accordance with internal needs. By tagging each patch panel port, you can simplify and streamline network management.

Differentiating Connector Boots

You can use color codes on connector boots to make routine maintenance and moves, adds and changes easier by helping technicians preserve correct parallel groupings for switch ports. If you change your connector color, you need to ensure that your fiber cable color represents the fiber grade to avoid confusion. You can also change the color of a connector boot to differentiate between different aspects of the network, making it easy for technicians to view the contrast within a panel.


Visual management is more intuitive for specialists to supervise the data center. Color code system has provided an ideal and easy way to solve the cabling problem. Inside the cables, the fiber buffers are also color-coded with standard colors to make connections and splices easier. Therefore, if you are still bothered by these issues of fiber patch cables, using the color code system is a good way to go.

How to Choose Optical Distribution Frame

Due to the development of high speed transmission, demands for high density patching have increased in recent years. However, the management of installed cables still remains a difficult task. To achieve a simpler way of cable organization, people often use the cost-effective optical distribution frames (ODF) to arrange optical cable connections. ODF plays an important part in building a safe and flexible operation environment for optical network. Different kinds of ODFs are provided in the market, but you need to choose the right one according to actual situation.

Functions of ODF

ODF is mainly used for fiber optic terminal splicing, fiber optic connector installation, optical path adjusting, excess pigtail storage and fiber optic cable protection. When cable enters into the rack, ODF should mechanically fix the cable and install the ground wire protection. Fiber optic cables will also be divided into groups for better management. When it comes to the spliced fibers, extra parts will be stored as a coil and the fusion splices are well-protected in the ODF. Adapters and connectors are pluggable and optical path can be freely adjusted or tested. Moreover, enough space of ODF is provided to satisfy a clear connection.

Things to Consider for Choosing ODF

Selecting a right ODF is vital to future applications. Here are some recommended aspects for you to consider before purchasing:

1) ODF Types

Generally, there are three types in terms of its structure. They are wall mount ODF, floor mount ODF and rack mount ODF. Wall mount ODF shapes are like a small box installed on the wall. Because the space is restrained, wall mount ODF only accepts small fiber counts. Floor mount ODF has a fixed and large fiber capacity in a closed structure. Rack mount ODF is more flexible to be installed on the rack to meet your requirements for different cable counts and specifications. This type is frequently used in optical distribution system with 19 inches’ specification to accommodate the size of standard transmission rack.


2) Fiber Counts

High density fiber counts have become the trend for future data center. Today, a single ODF unit usually has 12, 24, 36, 48, 72, 96 or even 144 ports. Customized ODF according to your needs is also available in the market.

3) Easy Management

Using a high density device will definitely increase the difficulty of cable management. ODF should allow for easy access to the connectors on the front and rear ports for quick insertion and removal, which means that ODF must provide adequate space. Besides, ODF should have the right colored adapters to match with optical connectors in case of wrong connections.

4) Good Protection

One basic function of ODF is the protection function. A standard ODF should comprise protection devices to prevent fiber optic connections from dust or stress damages. For instance, the splicing connection is very sensitive to outside environment and is important to the normal operation of a network, so the good quality of ODF protection device is of great importance.


In a word, ODF is now an indispensable equipment for the deployment of optical network. High-density ODF is especially popular in the industry. To find a suitable ODF with a lower price, careful selection is important. This article only provides some basic factors that may affect the application of ODF. For more information, please visit FS.COM.